001     906294
005     20240712084609.0
024 7 _ |a 10.1515/ract-2022-0014
|2 doi
024 7 _ |a 2128/31055
|2 Handle
024 7 _ |a altmetric:127096018
|2 altmetric
024 7 _ |a WOS:000784344500001
|2 WOS
037 _ _ |a FZJ-2022-01349
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wilden, Andreas
|0 P:(DE-Juel1)130438
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
260 _ _ |a Berlin
|c 2022
|b ˜Deœ Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1650608153_24793
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An innovative-SANEX process for the selective separation of the trivalent actinides americium and curium from a simulated PUREX raffinate solution was successfully demonstrated on the laboratory scale using a 16-stage 1 cm annular centrifugal contactor setup. The solvent was composed of 0.2 mol L−1 N,N,N',N'-tetra-n-octyl-diglycolamide (TODGA) and 5% v/v 1-octanol in a kerosene diluent. Zr(IV) and Pd(II) co-extraction was prevented using trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) as a masking agent in the feed. The actinide(III) selective back-extraction was achieved using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in 0.45 mol L−1 HNO3 as a CHON alternative to the sulfur-containing stripping agent used in a previous version of the innovative-SANEX process. The new process described in this paper showed excellent performance for the recovery of An(III). An An(III) product with a quasi-quantitative recovery of americium and curium (≥99.9%) and very good separation from fission and activation products was obtained (decontamination factors ≥4,000). Only a slight contamination with Zr and Ru was observed. This test demonstrates the successful use of molecules containing only carbon, hydrogen, oxygen, and nitrogen atoms (so-called CHON molecules) for the selective separation of An(III) from a simulated PUREX raffinate solution. By avoiding sulfur- or phosphorous-containing molecules, the generation of secondary radioactive waste during process operation can be reduced drastically.
536 _ _ |a 1412 - Predisposal (POF4-141)
|0 G:(DE-HGF)POF4-1412
|c POF4-141
|f POF IV
|x 0
536 _ _ |a GENIORS - GEN IV Integrated Oxide fuels recycling strategies (755171)
|0 G:(EU-Grant)755171
|c 755171
|f NFRP-2016-2017-1
|x 1
536 _ _ |a PATRICIA - Partitioning And Transmuter Research Initiative in a Collaborative Innovation Action (945077)
|0 G:(EU-Grant)945077
|c 945077
|f NFRP-2019-2020
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Schneider, Dimitri
|0 P:(DE-Juel1)164342
|b 1
|u fzj
700 1 _ |a Paparigas, Zaina
|0 P:(DE-Juel1)130395
|b 2
|u fzj
700 1 _ |a Henkes, Maximilian
|0 P:(DE-Juel1)176390
|b 3
|u fzj
700 1 _ |a Kreft, Fabian
|0 P:(DE-Juel1)176187
|b 4
|u fzj
700 1 _ |a Geist, Andreas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mossini, Eros
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Macerata, Elena
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mariani, Mario
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gullo, Maria Chiara
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Casnati, Alessandro
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Modolo, Giuseppe
|0 P:(DE-Juel1)130383
|b 11
|u fzj
773 _ _ |a 10.1515/ract-2022-0014
|0 PERI:(DE-600)2039575-9
|p 21 p.
|t Radiochimica acta
|v
|y 2022
|x 0033-8230
856 4 _ |u https://juser.fz-juelich.de/record/906294/files/Invoice_APC600292852.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/906294/files/10.1515_ract-2022-0014-1.pdf
909 C O |o oai:juser.fz-juelich.de:906294
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130438
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164342
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176390
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176187
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130383
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-141
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Nukleare Entsorgung
|9 G:(DE-HGF)POF4-1412
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOCHIM ACTA : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21