000906298 001__ 906298
000906298 005__ 20230123110600.0
000906298 0247_ $$2doi$$a10.1088/1367-2630/ac5490
000906298 0247_ $$2Handle$$a2128/30930
000906298 0247_ $$2altmetric$$aaltmetric:113837537
000906298 0247_ $$2WOS$$aWOS:000766853300001
000906298 037__ $$aFZJ-2022-01352
000906298 082__ $$a530
000906298 1001_ $$0P:(DE-Juel1)185970$$aFiorelli, Eliana$$b0$$eCorresponding author
000906298 245__ $$aPhase diagram of quantum generalized Potts-Hopfield neural networks
000906298 260__ $$a[London]$$bIOP$$c2022
000906298 3367_ $$2DRIVER$$aarticle
000906298 3367_ $$2DataCite$$aOutput Types/Journal article
000906298 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648468897_16573
000906298 3367_ $$2BibTeX$$aARTICLE
000906298 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906298 3367_ $$00$$2EndNote$$aJournal Article
000906298 520__ $$aWe introduce and analyze an open quantum generalization of the q-state Potts-Hopfield neural network, which is an associative memory model based on multi-level classical spins. The dynamics of this many-body system is formulated in terms of a Markovian master equation of Lindblad type, which allows to incorporate both probabilistic classical and coherent quantum processes on an equal footing. By employing a mean field description we investigate how classical fluctuations due to temperature and quantum fluctuations effectuated by coherent spin rotations affect the ability of the network to retrieve stored memory patterns. We construct the corresponding phase diagram, which in the low temperature regime displays pattern retrieval in analogy to the classical Potts-Hopfield neural network. When increasing quantum fluctuations, however, a limit cycle phase emerges, which has no classical counterpart. This shows that quantum effects can qualitatively alter the structure of the stationary state manifold with respect to the classical model, and potentially allow one to encode and retrieve novel types of patterns.
000906298 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000906298 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906298 7001_ $$0P:(DE-HGF)0$$aLesanovsky, Igor$$b1
000906298 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b2$$eCorresponding author
000906298 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/ac5490$$p033012$$tNew journal of physics$$v24$$x1367-2630$$y2022
000906298 8564_ $$uhttps://juser.fz-juelich.de/record/906298/files/Invoice_8196961.pdf
000906298 8564_ $$uhttps://juser.fz-juelich.de/record/906298/files/Fiorelli_2022_New_J._Phys._24_033012.pdf$$yOpenAccess
000906298 8767_ $$88196961$$92022-02-14$$d2022-02-18$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200177577
000906298 909CO $$ooai:juser.fz-juelich.de:906298$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000906298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185970$$aForschungszentrum Jülich$$b0$$kFZJ
000906298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b2$$kFZJ
000906298 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000906298 9141_ $$y2022
000906298 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000906298 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906298 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000906298 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000906298 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906298 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000906298 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000906298 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2021$$d2022-11-12
000906298 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000906298 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000906298 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-07-19T16:18:19Z
000906298 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-07-19T16:18:19Z
000906298 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-07-19T16:18:19Z
000906298 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000906298 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000906298 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000906298 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000906298 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000906298 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000906298 920__ $$lyes
000906298 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000906298 980__ $$ajournal
000906298 980__ $$aVDB
000906298 980__ $$aUNRESTRICTED
000906298 980__ $$aI:(DE-Juel1)PGI-2-20110106
000906298 980__ $$aAPC
000906298 9801_ $$aAPC
000906298 9801_ $$aFullTexts