000906312 001__ 906312
000906312 005__ 20230310131400.0
000906312 0247_ $$2doi$$a10.1002/aelm.202100936
000906312 0247_ $$2Handle$$a2128/31709
000906312 0247_ $$2WOS$$aWOS:000756639000001
000906312 037__ $$aFZJ-2022-01362
000906312 082__ $$a621.3
000906312 1001_ $$0P:(DE-Juel1)169605$$aHeisig, Thomas$$b0
000906312 245__ $$aChemical Structure of Conductive Filaments in Tantalum Oxide Memristive Devices and Its Implications for the Formation Mechanism
000906312 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co. KG$$c2022
000906312 3367_ $$2DRIVER$$aarticle
000906312 3367_ $$2DataCite$$aOutput Types/Journal article
000906312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661317365_27640
000906312 3367_ $$2BibTeX$$aARTICLE
000906312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906312 3367_ $$00$$2EndNote$$aJournal Article
000906312 520__ $$aResistive switching in metal oxides is believed to be caused by a temperature and electric field driven redistribution of oxygen vacancies within a nanometer sized conductive filament. Accordingly, gaining detailed information about the chemical composition of conductive filaments is of key importance for a comprehensive understanding of the switching process. In this work, spectromicroscopy is used to probe the electronic structure of conductive filaments in Ta2O5-based memristive devices. It is found that resistive switching leads to the formation of a conductive filament with an oxygen vacancy concentration of ≈20%. Spectroscopic insights provide detailed information about the chemical state of the tantalum cations and show that the filament is not composed of a metallic Ta0 phase. As an extreme case, devices after an irreversible dielectric breakdown are investigated. These devices feature larger conductive channels with higher oxygen vacancy concentrations. Using the experimental data as input for finite element simulations, the role of thermodiffusion for the formation process of conductive filaments is revealed. It is demonstrated that thermodiffusion is not the dominating effect for the filament formation here but might play a role in accelerating the forming process, as well as in the stabilization of the filament.
000906312 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000906312 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000906312 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x2
000906312 536__ $$0G:(DE-82)BMBF-16ES1134$$aBMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)$$cBMBF-16ES1134$$x3
000906312 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906312 7001_ $$0P:(DE-HGF)0$$aLange, Kristof$$b1
000906312 7001_ $$0P:(DE-Juel1)173699$$aGutsche, Alexander$$b2
000906312 7001_ $$0P:(DE-Juel1)180343$$aGoß, Kalle Thorben$$b3
000906312 7001_ $$0P:(DE-Juel1)174430$$aHambsch, Sebastian$$b4
000906312 7001_ $$0P:(DE-HGF)0$$aLocatelli, Andrea$$b5
000906312 7001_ $$0P:(DE-HGF)0$$aMenteş, Tevfik Onur$$b6
000906312 7001_ $$0P:(DE-HGF)0$$aGenuzio, Francesca$$b7
000906312 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b8
000906312 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b9$$eCorresponding author
000906312 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.202100936$$gp. 2100936 -$$n8$$p2100936 -$$tAdvanced electronic materials$$v8$$x2199-160X$$y2022
000906312 8564_ $$uhttps://juser.fz-juelich.de/record/906312/files/Adv%20Elect%20Materials%20-%202022%20-%20Heisig%20-%20Chemical%20Structure%20of%20Conductive%20Filaments%20in%20Tantalum%20Oxide%20Memristive%20Devices%20and.pdf$$yOpenAccess
000906312 8767_ $$d2022-08-15$$eHybrid-OA$$jDEAL
000906312 909CO $$ooai:juser.fz-juelich.de:906312$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000906312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173699$$aForschungszentrum Jülich$$b2$$kFZJ
000906312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180343$$aForschungszentrum Jülich$$b3$$kFZJ
000906312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174430$$aForschungszentrum Jülich$$b4$$kFZJ
000906312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b8$$kFZJ
000906312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b9$$kFZJ
000906312 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000906312 9141_ $$y2022
000906312 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000906312 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000906312 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000906312 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906312 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000906312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2021$$d2022-11-12
000906312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000906312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000906312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000906312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000906312 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000906312 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ELECTRON MATER : 2021$$d2022-11-12
000906312 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000906312 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906312 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906312 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000906312 920__ $$lno
000906312 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000906312 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000906312 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000906312 9801_ $$aFullTexts
000906312 980__ $$ajournal
000906312 980__ $$aVDB
000906312 980__ $$aUNRESTRICTED
000906312 980__ $$aI:(DE-Juel1)PGI-7-20110106
000906312 980__ $$aI:(DE-82)080009_20140620
000906312 980__ $$aI:(DE-Juel1)PGI-10-20170113
000906312 980__ $$aAPC