001     906312
005     20230310131400.0
024 7 _ |a 10.1002/aelm.202100936
|2 doi
024 7 _ |a 2128/31709
|2 Handle
024 7 _ |a WOS:000756639000001
|2 WOS
037 _ _ |a FZJ-2022-01362
082 _ _ |a 621.3
100 1 _ |a Heisig, Thomas
|0 P:(DE-Juel1)169605
|b 0
245 _ _ |a Chemical Structure of Conductive Filaments in Tantalum Oxide Memristive Devices and Its Implications for the Formation Mechanism
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661317365_27640
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resistive switching in metal oxides is believed to be caused by a temperature and electric field driven redistribution of oxygen vacancies within a nanometer sized conductive filament. Accordingly, gaining detailed information about the chemical composition of conductive filaments is of key importance for a comprehensive understanding of the switching process. In this work, spectromicroscopy is used to probe the electronic structure of conductive filaments in Ta2O5-based memristive devices. It is found that resistive switching leads to the formation of a conductive filament with an oxygen vacancy concentration of ≈20%. Spectroscopic insights provide detailed information about the chemical state of the tantalum cations and show that the filament is not composed of a metallic Ta0 phase. As an extreme case, devices after an irreversible dielectric breakdown are investigated. These devices feature larger conductive channels with higher oxygen vacancy concentrations. Using the experimental data as input for finite element simulations, the role of thermodiffusion for the formation process of conductive filaments is revealed. It is demonstrated that thermodiffusion is not the dominating effect for the filament formation here but might play a role in accelerating the forming process, as well as in the stabilization of the filament.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|x 0
|f POF IV
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 2
536 _ _ |a BMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)
|0 G:(DE-82)BMBF-16ES1134
|c BMBF-16ES1134
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lange, Kristof
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gutsche, Alexander
|0 P:(DE-Juel1)173699
|b 2
700 1 _ |a Goß, Kalle Thorben
|0 P:(DE-Juel1)180343
|b 3
700 1 _ |a Hambsch, Sebastian
|0 P:(DE-Juel1)174430
|b 4
700 1 _ |a Locatelli, Andrea
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Menteş, Tevfik Onur
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Genuzio, Francesca
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 8
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 9
|e Corresponding author
773 _ _ |a 10.1002/aelm.202100936
|g p. 2100936 -
|0 PERI:(DE-600)2810904-1
|n 8
|p 2100936 -
|t Advanced electronic materials
|v 8
|y 2022
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/906312/files/Adv%20Elect%20Materials%20-%202022%20-%20Heisig%20-%20Chemical%20Structure%20of%20Conductive%20Filaments%20in%20Tantalum%20Oxide%20Memristive%20Devices%20and.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906312
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174430
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2021
|d 2022-11-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21