Hauptseite > Publikationsdatenbank > Chemical Structure of Conductive Filaments in Tantalum Oxide Memristive Devices and Its Implications for the Formation Mechanism > print |
001 | 906312 | ||
005 | 20230310131400.0 | ||
024 | 7 | _ | |a 10.1002/aelm.202100936 |2 doi |
024 | 7 | _ | |a 2128/31709 |2 Handle |
024 | 7 | _ | |a WOS:000756639000001 |2 WOS |
037 | _ | _ | |a FZJ-2022-01362 |
082 | _ | _ | |a 621.3 |
100 | 1 | _ | |a Heisig, Thomas |0 P:(DE-Juel1)169605 |b 0 |
245 | _ | _ | |a Chemical Structure of Conductive Filaments in Tantalum Oxide Memristive Devices and Its Implications for the Formation Mechanism |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH Verlag GmbH & Co. KG |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1661317365_27640 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Resistive switching in metal oxides is believed to be caused by a temperature and electric field driven redistribution of oxygen vacancies within a nanometer sized conductive filament. Accordingly, gaining detailed information about the chemical composition of conductive filaments is of key importance for a comprehensive understanding of the switching process. In this work, spectromicroscopy is used to probe the electronic structure of conductive filaments in Ta2O5-based memristive devices. It is found that resistive switching leads to the formation of a conductive filament with an oxygen vacancy concentration of ≈20%. Spectroscopic insights provide detailed information about the chemical state of the tantalum cations and show that the filament is not composed of a metallic Ta0 phase. As an extreme case, devices after an irreversible dielectric breakdown are investigated. These devices feature larger conductive channels with higher oxygen vacancy concentrations. Using the experimental data as input for finite element simulations, the role of thermodiffusion for the formation process of conductive filaments is revealed. It is demonstrated that thermodiffusion is not the dominating effect for the filament formation here but might play a role in accelerating the forming process, as well as in the stabilization of the filament. |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |x 0 |f POF IV |
536 | _ | _ | |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811) |0 G:(GEPRIS)167917811 |c 167917811 |x 1 |
536 | _ | _ | |a ACA - Advanced Computing Architectures (SO-092) |0 G:(DE-HGF)SO-092 |c SO-092 |x 2 |
536 | _ | _ | |a BMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134) |0 G:(DE-82)BMBF-16ES1134 |c BMBF-16ES1134 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Lange, Kristof |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Gutsche, Alexander |0 P:(DE-Juel1)173699 |b 2 |
700 | 1 | _ | |a Goß, Kalle Thorben |0 P:(DE-Juel1)180343 |b 3 |
700 | 1 | _ | |a Hambsch, Sebastian |0 P:(DE-Juel1)174430 |b 4 |
700 | 1 | _ | |a Locatelli, Andrea |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Menteş, Tevfik Onur |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Genuzio, Francesca |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Menzel, Stephan |0 P:(DE-Juel1)158062 |b 8 |
700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1002/aelm.202100936 |g p. 2100936 - |0 PERI:(DE-600)2810904-1 |n 8 |p 2100936 - |t Advanced electronic materials |v 8 |y 2022 |x 2199-160X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906312/files/Adv%20Elect%20Materials%20-%202022%20-%20Heisig%20-%20Chemical%20Structure%20of%20Conductive%20Filaments%20in%20Tantalum%20Oxide%20Memristive%20Devices%20and.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906312 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173699 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)180343 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)174430 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)158062 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-28 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ELECTRON MATER : 2021 |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-12 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ADV ELECTRON MATER : 2021 |d 2022-11-12 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|