000906315 001__ 906315
000906315 005__ 20240313103123.0
000906315 0247_ $$2doi$$a10.3389/fnins.2021.728460
000906315 0247_ $$2ISSN$$a1662-453X
000906315 0247_ $$2ISSN$$a1662-4548
000906315 0247_ $$2Handle$$a2128/30741
000906315 0247_ $$2altmetric$$aaltmetric:122531981
000906315 0247_ $$2pmid$$apmid:35126034
000906315 0247_ $$2WOS$$aWOS:000750070900001
000906315 037__ $$aFZJ-2022-01365
000906315 082__ $$a610
000906315 1001_ $$0P:(DE-Juel1)174220$$aHeittmann, Arne$$b0$$eCorresponding author
000906315 245__ $$aSimulating the Cortical Microcircuit Significantly Faster Than Real Time on the IBM INC-3000 Neural Supercomputer
000906315 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000906315 3367_ $$2DRIVER$$aarticle
000906315 3367_ $$2DataCite$$aOutput Types/Journal article
000906315 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1660803792_13884
000906315 3367_ $$2BibTeX$$aARTICLE
000906315 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906315 3367_ $$00$$2EndNote$$aJournal Article
000906315 520__ $$aThis article employs the new IBM INC-3000 prototype FPGA-based neural supercomputer to implement a widely used model of the cortical microcircuit. With approximately 80,000 neurons and 300 Million synapses this model has become a benchmark network for comparing simulation architectures with regard to performance. To the best of our knowledge, the achieved speed-up factor is 2.4 times larger than the highest speed-up factor reported in the literature and four times larger than biological real time demonstrating the potential of FPGA systems for neural modeling. The work was performed at Jülich Research Centre in Germany and the INC-3000 was built at the IBM Almaden Research Center in San Jose, CA, United States. For the simulation of the microcircuit only the programmable logic part of the FPGA nodes are used. All arithmetic is implemented with single-floating point precision. The original microcircuit network with linear LIF neurons and current-based exponential-decay-, alpha-function- as well as beta-function-shaped synapses was simulated using exact exponential integration as ODE solver method. In order to demonstrate the flexibility of the approach, additionally networks with non-linear neuron models (AdEx, Izhikevich) and conductance-based synapses were simulated, applying Runge–Kutta and Parker–Sochacki solver methods. In all cases, the simulation-time speed-up factor did not decrease by more than a very few percent. It finally turns out that the speed-up factor is essentially limited by the latency of the INC-3000 communication system.
000906315 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000906315 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x1
000906315 536__ $$0G:(DE-HGF)POF4-5122$$a5122 - Future Computing & Big Data Systems (POF4-512)$$cPOF4-512$$fPOF IV$$x2
000906315 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x3
000906315 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906315 7001_ $$0P:(DE-Juel1)178608$$aPsychou, Georgia$$b1$$ufzj
000906315 7001_ $$0P:(DE-Juel1)168379$$aTrensch, Guido$$b2$$ufzj
000906315 7001_ $$0P:(DE-HGF)0$$aCox, Charles E.$$b3
000906315 7001_ $$0P:(DE-HGF)0$$aWilcke, Winfried W.$$b4
000906315 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b5$$ufzj
000906315 7001_ $$0P:(DE-Juel1)172656$$aNoll, Tobias G.$$b6$$ufzj
000906315 773__ $$0PERI:(DE-600)2411902-7$$a10.3389/fnins.2021.728460$$gVol. 15, p. 728460$$p728460$$tFrontiers in neuroscience$$v15$$x1662-453X$$y2022
000906315 8564_ $$uhttps://juser.fz-juelich.de/record/906315/files/fnins-15-728460.pdf$$yOpenAccess
000906315 8767_ $$d2022-12-20$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507,50 USD
000906315 909CO $$ooai:juser.fz-juelich.de:906315$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000906315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174220$$aForschungszentrum Jülich$$b0$$kFZJ
000906315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178608$$aForschungszentrum Jülich$$b1$$kFZJ
000906315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168379$$aForschungszentrum Jülich$$b2$$kFZJ
000906315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b5$$kFZJ
000906315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172656$$aForschungszentrum Jülich$$b6$$kFZJ
000906315 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000906315 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5122$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x1
000906315 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x2
000906315 9141_ $$y2022
000906315 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906315 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906315 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000906315 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906315 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000906315 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906315 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906315 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000906315 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906315 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000906315 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROSCI-SWITZ : 2021$$d2022-11-09
000906315 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000906315 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000906315 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:19:45Z
000906315 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:19:45Z
000906315 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:19:45Z
000906315 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000906315 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000906315 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000906315 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-09
000906315 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT NEUROSCI-SWITZ : 2021$$d2022-11-09
000906315 920__ $$lno
000906315 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000906315 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000906315 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000906315 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x3
000906315 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x4
000906315 9801_ $$aFullTexts
000906315 980__ $$ajournal
000906315 980__ $$aVDB
000906315 980__ $$aI:(DE-Juel1)PGI-10-20170113
000906315 980__ $$aI:(DE-Juel1)INM-6-20090406
000906315 980__ $$aI:(DE-Juel1)INM-10-20170113
000906315 980__ $$aI:(DE-Juel1)IAS-6-20130828
000906315 980__ $$aI:(DE-Juel1)JSC-20090406
000906315 980__ $$aUNRESTRICTED
000906315 980__ $$aAPC
000906315 981__ $$aI:(DE-Juel1)IAS-6-20130828