001     906315
005     20240313103123.0
024 7 _ |a 10.3389/fnins.2021.728460
|2 doi
024 7 _ |a 1662-453X
|2 ISSN
024 7 _ |a 1662-4548
|2 ISSN
024 7 _ |a 2128/30741
|2 Handle
024 7 _ |a altmetric:122531981
|2 altmetric
024 7 _ |a pmid:35126034
|2 pmid
024 7 _ |a WOS:000750070900001
|2 WOS
037 _ _ |a FZJ-2022-01365
082 _ _ |a 610
100 1 _ |a Heittmann, Arne
|0 P:(DE-Juel1)174220
|b 0
|e Corresponding author
245 _ _ |a Simulating the Cortical Microcircuit Significantly Faster Than Real Time on the IBM INC-3000 Neural Supercomputer
260 _ _ |a Lausanne
|c 2022
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660803792_13884
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This article employs the new IBM INC-3000 prototype FPGA-based neural supercomputer to implement a widely used model of the cortical microcircuit. With approximately 80,000 neurons and 300 Million synapses this model has become a benchmark network for comparing simulation architectures with regard to performance. To the best of our knowledge, the achieved speed-up factor is 2.4 times larger than the highest speed-up factor reported in the literature and four times larger than biological real time demonstrating the potential of FPGA systems for neural modeling. The work was performed at Jülich Research Centre in Germany and the INC-3000 was built at the IBM Almaden Research Center in San Jose, CA, United States. For the simulation of the microcircuit only the programmable logic part of the FPGA nodes are used. All arithmetic is implemented with single-floating point precision. The original microcircuit network with linear LIF neurons and current-based exponential-decay-, alpha-function- as well as beta-function-shaped synapses was simulated using exact exponential integration as ODE solver method. In order to demonstrate the flexibility of the approach, additionally networks with non-linear neuron models (AdEx, Izhikevich) and conductance-based synapses were simulated, applying Runge–Kutta and Parker–Sochacki solver methods. In all cases, the simulation-time speed-up factor did not decrease by more than a very few percent. It finally turns out that the speed-up factor is essentially limited by the latency of the INC-3000 communication system.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|f Advanced Computing Architectures
|x 1
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 2
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Psychou, Georgia
|0 P:(DE-Juel1)178608
|b 1
|u fzj
700 1 _ |a Trensch, Guido
|0 P:(DE-Juel1)168379
|b 2
|u fzj
700 1 _ |a Cox, Charles E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wilcke, Winfried W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 5
|u fzj
700 1 _ |a Noll, Tobias G.
|0 P:(DE-Juel1)172656
|b 6
|u fzj
773 _ _ |a 10.3389/fnins.2021.728460
|g Vol. 15, p. 728460
|0 PERI:(DE-600)2411902-7
|p 728460
|t Frontiers in neuroscience
|v 15
|y 2022
|x 1662-453X
856 4 _ |u https://juser.fz-juelich.de/record/906315/files/fnins-15-728460.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906315
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174220
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168379
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172656
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 2
914 1 _ |y 2022
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROSCI-SWITZ : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T13:19:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T13:19:45Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-11T13:19:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT NEUROSCI-SWITZ : 2021
|d 2022-11-09
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 3
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 4
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21