000906323 001__ 906323
000906323 005__ 20230123101901.0
000906323 0247_ $$2doi$$a10.1016/j.nima.2020.164749
000906323 0247_ $$2ISSN$$a0168-9002
000906323 0247_ $$2ISSN$$a1872-9576
000906323 0247_ $$2Handle$$a2128/30775
000906323 0247_ $$2altmetric$$aaltmetric:92136334
000906323 0247_ $$2WOS$$aWOS:000595155500008
000906323 037__ $$aFZJ-2022-01373
000906323 041__ $$aEnglish
000906323 082__ $$a530
000906323 1001_ $$0P:(DE-Juel1)130729$$aIoffe, A.$$b0$$eCorresponding author
000906323 245__ $$aExperimental test of the rotating magnetic field neutron spin-echo technique: Spin-echo and MIEZE for large energy transfers
000906323 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2021
000906323 3367_ $$2DRIVER$$aarticle
000906323 3367_ $$2DataCite$$aOutput Types/Journal article
000906323 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645605701_22564
000906323 3367_ $$2BibTeX$$aARTICLE
000906323 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906323 3367_ $$00$$2EndNote$$aJournal Article
000906323 520__ $$aHere we are describing the experimental realization of the rotating magnetic field neutron spin echo (RFSE) technique that is based on spin turners using truly rotating magnetic fields. RFSE has no practical limit for short Fourier times and a “shorty” instrument mode built on this principle can be easily used at generic neutron spin echo spectrometers to increase their dynamical range beyond that provided by currently used methods.The upper limit for Fourier times is estimated. The tripling of the field integral (and hence the maximum Fourier time) by means of the bootstrap method is experimentally demonstrated. The suitability of RFSE for the use of Fresnel-type correction elements aiming to equalize the field integral for divergent neutron beams scattered by the sample is shown. The experimental realization of the MIEZE method using the RFSE technique allowing for studies of depolarizing samples and/or with depolarizing sample environments is presented.
000906323 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000906323 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000906323 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906323 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000906323 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000906323 693__ $$0EXP:(DE-MLZ)MIRA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MIRA-20140101$$6EXP:(DE-MLZ)NL6N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMIRA: Multipurpose instrument$$fNL6N$$x0
000906323 7001_ $$0P:(DE-Juel1)130509$$aArend, N.$$b1
000906323 7001_ $$0P:(DE-HGF)0$$aKraan, W. H.$$b2
000906323 773__ $$0PERI:(DE-600)1466532-3$$a10.1016/j.nima.2020.164749$$gVol. 986, p. 164749 -$$p164749 -$$tNuclear instruments & methods in physics research / A$$v986$$x0168-9002$$y2021
000906323 8564_ $$uhttps://juser.fz-juelich.de/record/906323/files/ioffe_article_Ioffe_RFSE_final.docx$$yPublished on 2020-10-09. Available in OpenAccess from 2022-10-09.
000906323 8564_ $$uhttps://juser.fz-juelich.de/record/906323/files/j.nima.2020.164749-1.pdf$$yRestricted
000906323 909CO $$ooai:juser.fz-juelich.de:906323$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000906323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130729$$aForschungszentrum Jülich$$b0$$kFZJ
000906323 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000906323 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000906323 9141_ $$y2022
000906323 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000906323 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000906323 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000906323 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL INSTRUM METH A : 2019$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000906323 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000906323 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000906323 920__ $$lyes
000906323 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000906323 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000906323 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000906323 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000906323 980__ $$ajournal
000906323 980__ $$aVDB
000906323 980__ $$aUNRESTRICTED
000906323 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000906323 980__ $$aI:(DE-588b)4597118-3
000906323 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000906323 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000906323 9801_ $$aFullTexts