000906324 001__ 906324
000906324 005__ 20230123101847.0
000906324 0247_ $$2doi$$a10.1103/PhysRevB.103.214415
000906324 0247_ $$2ISSN$$a1098-0121
000906324 0247_ $$2ISSN$$a2469-9977
000906324 0247_ $$2ISSN$$a0163-1829
000906324 0247_ $$2ISSN$$a0556-2805
000906324 0247_ $$2ISSN$$a1095-3795
000906324 0247_ $$2ISSN$$a1538-4489
000906324 0247_ $$2ISSN$$a1550-235X
000906324 0247_ $$2ISSN$$a2469-9950
000906324 0247_ $$2ISSN$$a2469-9969
000906324 0247_ $$2Handle$$a2128/30768
000906324 0247_ $$2altmetric$$aaltmetric:106367900
000906324 0247_ $$2WOS$$aWOS:000661189400002
000906324 037__ $$aFZJ-2022-01374
000906324 082__ $$a530
000906324 1001_ $$00000-0003-0639-2503$$aInosov, D. S.$$b0$$eCorresponding author
000906324 245__ $$aLocal origin of the strong field-space anisotropy in the magnetic phase diagrams of Ce 1 − x La x B 6 measured in a rotating magnetic field
000906324 260__ $$aWoodbury, NY$$bInst.$$c2021
000906324 3367_ $$2DRIVER$$aarticle
000906324 3367_ $$2DataCite$$aOutput Types/Journal article
000906324 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645543502_20024
000906324 3367_ $$2BibTeX$$aARTICLE
000906324 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906324 3367_ $$00$$2EndNote$$aJournal Article
000906324 520__ $$aCubic f-electron compounds commonly exhibit highly anisotropic magnetic phase diagrams consisting of multiple long-range ordered phases. Field-driven metamagnetic transitions between them may depend not only on the magnitude, but also on the direction of the applied magnetic field. Examples of such behavior are plentiful among rare-earth borides, such as RB6 or RB12 (R = rare earth). In this work, for example, we use torque magnetometry to measure anisotropic field-angular phase diagrams of La-doped cerium hexaborides, Ce1−xLaxB6 (x=0,0.18,0.28,0.5). One expects that field-directional anisotropy of phase transitions must be impossible to understand without knowing the magnetic structures of the corresponding competing phases and being able to evaluate their precise thermodynamic energy balance. However, this task is usually beyond the reach of available theoretical approaches, because the ordered phases can be noncollinear, possess large magnetic unit cells, involve higher-order multipoles of 4f ions rather than simple dipoles, or just lack sufficient microscopic characterization. Here we demonstrate that the anisotropy under field rotation can be qualitatively understood on a much more basic level of theory, just by considering the crystal-electric-field scheme of a pair of rare-earth ions in the lattice, coupled by a single nearest-neighbor exchange interaction. Transitions between different crystal-field ground states, calculated using this minimal model for the parent compound CeB6, possess field-directional anisotropy that strikingly resembles the experimental phase diagrams. This implies that the anisotropy of phase transitions is of local origin and is easier to describe than the ordered phases themselves.
000906324 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000906324 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000906324 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906324 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000906324 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000906324 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000906324 693__ $$0EXP:(DE-MLZ)PANDA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PANDA-20140101$$6EXP:(DE-MLZ)SR2-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePANDA: Cold three axes spectrometer$$fSR2$$x0
000906324 7001_ $$0P:(DE-HGF)0$$aAvdoshenko, S.$$b1
000906324 7001_ $$0P:(DE-HGF)0$$aPortnichenko, P. Y.$$b2
000906324 7001_ $$0P:(DE-HGF)0$$aChoi, Eun Sang$$b3
000906324 7001_ $$0P:(DE-Juel1)156579$$aSchneidewind, A.$$b4
000906324 7001_ $$00000-0001-8503-6712$$aMignot, J.-M.$$b5
000906324 7001_ $$0P:(DE-HGF)0$$aNikolo, M.$$b6$$eCorresponding author
000906324 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.103.214415$$gVol. 103, no. 21, p. 214415$$n21$$p214415$$tPhysical review / B$$v103$$x1098-0121$$y2021
000906324 8564_ $$uhttps://juser.fz-juelich.de/record/906324/files/PhysRevB.103.214415.pdf$$yOpenAccess
000906324 8564_ $$uhttps://juser.fz-juelich.de/record/906324/files/schneidewind_2105.10694.pdf$$yOpenAccess
000906324 909CO $$ooai:juser.fz-juelich.de:906324$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000906324 9101_ $$0I:(DE-HGF)0$$60000-0003-0639-2503$$aExternal Institute$$b0$$kExtern
000906324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156579$$aForschungszentrum Jülich$$b4$$kFZJ
000906324 9101_ $$0I:(DE-HGF)0$$60000-0001-8503-6712$$aExternal Institute$$b5$$kExtern
000906324 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000906324 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000906324 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000906324 9141_ $$y2022
000906324 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000906324 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000906324 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906324 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000906324 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000906324 920__ $$lyes
000906324 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000906324 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000906324 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000906324 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000906324 980__ $$ajournal
000906324 980__ $$aVDB
000906324 980__ $$aUNRESTRICTED
000906324 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000906324 980__ $$aI:(DE-588b)4597118-3
000906324 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000906324 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000906324 9801_ $$aFullTexts