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Cubic f-electron compounds commonly exhibit highly anisotropic magnetic phase diagrams consisting of
multiple long-range ordered phases. Field-driven metamagnetic transitions between them may depend not only
on the magnitude, but also on the direction of the applied magnetic field. Examples of such behavior are
plentiful among rare-earth borides, such as RB6 or RB12 (R = rare earth). In this work, for example, we use
torque magnetometry to measure anisotropic field-angular phase diagrams of La-doped cerium hexaborides,
Ce1−xLaxB6 (x = 0, 0.18, 0.28, 0.5). One expects that field-directional anisotropy of phase transitions must
be impossible to understand without knowing the magnetic structures of the corresponding competing phases
and being able to evaluate their precise thermodynamic energy balance. However, this task is usually beyond
the reach of available theoretical approaches, because the ordered phases can be noncollinear, possess large
magnetic unit cells, involve higher-order multipoles of 4f ions rather than simple dipoles, or just lack sufficient
microscopic characterization. Here we demonstrate that the anisotropy under field rotation can be qualitatively
understood on a much more basic level of theory, just by considering the crystal-electric-field scheme of a pair
of rare-earth ions in the lattice, coupled by a single nearest-neighbor exchange interaction. Transitions between
different crystal-field ground states, calculated using this minimal model for the parent compound CeB6, possess
field-directional anisotropy that strikingly resembles the experimental phase diagrams. This implies that the
anisotropy of phase transitions is of local origin and is easier to describe than the ordered phases themselves.

DOI: 10.1103/PhysRevB.103.214415

I. INTRODUCTION

A. Magnetic anisotropy in cubic systems

It is often believed that magnetocrystalline anisotropy in
cubic magnetic systems must usually be small. This may be
true for systems with vanishingly weak spin-orbit coupling,
because the contribution from the spin-spin part of the elec-
tron interactions is known to average out in collinear cubic
magnets [1,2]. It is nevertheless possible to observe significant
field-angular anisotropy of magnetic and transport properties
in certain transition-metal compounds such as the cubic per-
ovskite SrCoO3, where they have been attributed to orbital
fluctuations and to an anisotropic scattering rate of conduction
electrons in the ferromagnetic state [3], and even in the spin-
1/2 cubic antiferromagnet Cu3TeO6 [4,5].

Strong magnetic anisotropy is especially common in rare-
earth (RE) compounds, where it is due to the effect of
crystalline electric fields (CEFs) on the 4f -electron wave
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functions. For example, it is very pronounced in RFe2 and
RCo2 Laves phases [6,7] (R = rare earth), where it could be
satisfactorily explained by means of single-ion crystal-field
theory [8]. From more recent examples, strong anisotropy in
the field-angular dependence of magnetoresistance, measured
upon continuously rotating the direction of an external mag-
netic field B, was reported for the half-Heusler compounds
TbPtBi and HoPtBi [9,10] and for several RE dodeca-
borides [11–17], most prominently pure and doped TmB12

and ErB12. In TmB12 and its doped derivatives Tm1−xLuxB12

and Tm1−xYbxB12, the field-angular magnetic phase diagrams
in the B ⊥ 〈110〉 plane, suggested by the magnetotransport
measurements, resemble a Maltese cross [12–17] with very
sharp straight transition lines, separating different antiferro-
magnetic (AFM) phases that exist between 0 and 3 T in sectors
around the [001], [111], and [110] field directions. Doping
with nonmagnetic lutetium tends to enhance this anisotropic
behavior.

Still, even in systems with strong spin-orbit coupling (such
as heavy-fermion systems with f electrons), experimental-
ists commonly do not anticipate either a strong dependence
of the system’s magnetic properties on the direction of
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the applied magnetic field or any qualitative change in
the magnetic ground-state configuration upon field rotation.
Observations of strong field-directional anisotropy in magne-
tization, specific heat, or magnetotransport data are sometimes
interpreted as evidence for spontaneously broken cubic sym-
metry (e.g., due to the formation of charge stripes [11–18]
or electron-nematic instabilities [19,20]) even without quan-
titative estimates of the expected magnitude of the same
effect in the original cubic symmetry of the lattice. In the
present work, we provide such an estimate by calculating
the field-angular anisotropy of the CEF ground state for a
minimal two-site model consisting of a pair of RE ions in a
cubic crystal field, coupled by a single exchange interaction.
The resulting field-angular phase diagrams are qualitatively
similar to those obtained experimentally and display equally
strong anisotropy. This suggests that the anisotropy of phase
boundaries separating long-range ordered magnetic phases in
CeB6 are of much more fundamental origin than these phases
themselves and appears even within a purely local model that
does not break the cubic lattice symmetry.

B. Magnetic phase diagram of Ce1−xLaxB6

The heavy-fermion compound CeB6 is well suited for our
purpose because its magnetic phase diagram contains several
long-range ordered phases separated by field-driven magnetic
phase transitions that are very well studied (see Ref. [21], and
references therein). In zero magnetic field, the ground state is
a double-q AFM phase III with a noncollinear spin arrange-
ment characterized by a pair of propagation vectors, q1 =
( 1

4
1
4 0) and q2 = ( 1

4
1
4

1
2 ); in moderate fields (1–2 T, depending

on the field direction) it changes to a single-q collinear AFM
phase III′ [22–26]; and at even higher fields the order param-
eter of the ground state changes one more time to phase II
that represents a combination of primary antiferroquadrupolar
(AFQ) order with the propagation vector qAFQ = ( 1

2
1
2

1
2 ), also

referred to as orbital antiferromagnetic in earlier literature
[27], and a secondary field-induced dipolar-octupolar order
with the same wave vector [28–36]. Substitution of non-
magnetic La for Ce in the Ce1−xLaxB6 solid solutions [21]
stabilizes another multipolar phase IV, presumably antifer-
rooctupolar (AFO) in character [37–48].

It has long been known that the magnetic phase diagrams
of Ce1−xLaxB6 depend on the direction of magnetic field.
For example, the transition to phase II in pure CeB6 occurs
at 2.3 T for B ‖ 〈001〉 but already at 1.4 T for B ‖ 〈110〉
[22]. The intermediate phase III′ extends from 1.0 to 1.65 T
for B ‖ 〈111〉, but nearly disappears for B ‖ 〈110〉 [26]. The
anisotropy becomes even stronger upon La substitution, as
phase III extends up to 4 T in Ce0.8La0.2B6 [41] and up to
4.5 T in Ce0.5La0.5B6 [37] for B ‖ 〈001〉 but remains nearly
unchanged for B ‖ 〈111〉 [49]. The available published data
are abundant, but they are scattered over many publications,
originate from measurements at different temperatures using
different methods, and are mostly restricted to high-symmetry
field directions with the single exception of the field-angular
dependence of magnetization in pure CeB6 measured at 1.4 K
by Kunimori et al. [26]. Therefore, in this paper we use torque
magnetometry to measure the field-angular phase diagrams
of Ce1−xLaxB6 (x = 0, 0.18, 0.28, 0.50) systematically under

continuous field rotation and at a much lower temperature
of 20 mK. To identify the magnetic phases, we compare the
results with elastic neutron scattering data and with a panoply
of previously published data.

II. EXPERIMENTAL RESULTS

A. Elastic neutron scattering

Neutron scattering is one of the most direct ways to re-
veal the character and microscopic structure of a magnetic
phase. To simplify the correct identification of phase transi-
tions in the following, we start with presenting elastic neutron
scattering data for pure CeB6. In Fig. 1, we show the field de-
pendences of magnetic Bragg intensity in CeB6, which were
measured at the ordering vectors of phases II, III, and III′ for
several high-symmetry directions of the magnetic field, B ‖
[111], [112], and [001]. The data for B ‖ [110] from the same
sample can be found elsewhere [21]. The measurements were
done using cold-neutron triple-axis spectrometers PANDA at
the FRM-II research reactor of the Maier-Leibnitz Zentrum
(MLZ, Garching, Germany) [50,51] and 4F2 at the reactor
Orphée of the Laboratoire Léon Brillouin (LLB, CEA-Saclay,
France), in addition to the spectroscopic measurements de-
scribed in Ref. [52]. Energy analysis was used to eliminate
the contribution from inelastic scattering, revealing purely
elastic Bragg intensity at q1 = { 1

4
1
4 0} or { 3

4
3
4 0}, q2 = { 1

4
1
4

1
2 },

and qAFQ = { 1
2

1
2

1
2 }. These measurements show a factor of 2

anisotropy in the field required to suppress phase III between
the [111] and [001] field directions.

It has to be noted that due to the geometric constraints
of the triple-axis experiment, not every ordering vector can
be reached for certain field directions. The measurement is
restricted to wave vectors in the horizontal scattering plane,
while the field direction is vertical in all our measurements
[52]. Therefore, q1 can be probed in all four high-symmetry
configurations (but not at intermediate angles), q2 is only
accessible for B ‖ [111] and [110], and qAFQ only for B ‖
[110] and [112]. The neutron data reveal three distinct phase
transitions:

(1) Domain selection. At low fields, the selection of AFM
domains leads to an enhancement (or suppression) of the
Bragg intensity at q1,2 for any general field direction except
for B ‖ [111], because this field orientation does not break
the equivalency of domains with ( 1

2
1
2 0), ( 1

2 0 1
2 ), and (0 1

2
1
2 )

propagation vectors. For B ‖ [001] or [112], domains with
the wave vector orthogonal to field are favored, which re-
sults in a threefold increase in Bragg intensity at low fields
at the expense of the suppressed domains whose ordering
vectors lie above or below the scattering plane. The domain-
selection transition is complete around 0.3 T (asterisk symbols
in Fig. 1). For B ‖ [110], the Bragg peaks in the scatter-
ing plane show opposite behavior and are suppressed by the
field [21].

(2) Phase III-III ′ transition. As one can see from the
B ‖ [111] data, the Bragg intensity at q1 is suppressed before
that at q2. This signifies a transition from the double-q phase
III to the single-q phase III′. As one can see from Fig. 5, this
intermediate phase is most stable around B ‖ [111], where it
occupies a field range from 1.1 to 1.7 T at T = 20 mK or
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FIG. 1. Magnetic-field dependence of the elastic neutron scatter-
ing intensity in pure CeB6 at q1 = { 1

4
1
4 0} or { 3

4
3
4 0}, q2 = { 1

4
1
4

1
2 }, and

qAFQ = { 1
2

1
2

1
2 } for three different field directions: B ‖ [111], [112],

and [001]. The data were measured in different experiments with dif-
ferent crystal orientations, therefore intensities are not comparable.
The datasets are shifted vertically for clarity. Phase transitions are
marked with arrows, and the domain selection transition is indicated
with asterisks.

from 0.9 to 1.5 T at T = 1.7 K. The rotation of magnetic-field
direction towards [001] stabilizes phase III so that it persists
up to 2 T. The field range occupied by phase III′ within the
B ⊥ [001] plane is reduced to approximately 0.2 T (Fig. 6),
which is consistent with earlier magnetization measurements
by Kunimori et al. [26].

(3) The transition to phase II. The primary AFQ order pa-
rameter in phase II is “hidden” to neutron scattering, because
quadrupolar moments are nonmagnetic and have zero scat-
tering cross section. Nevertheless, the onset of AFQ order in
phase II is manifested by the secondary field-induced dipolar-
octupolar order parameter [36] that leads to a linear increase

in Bragg intensity at qAFQ [21,28,34]. In pure CeB6, this onset
coincides with the suppression of phase III, as one can see in
the data for B ‖ [112] in Fig. 1. Upon La doping, as the region
corresponding to phase III′ increases, the magnetic intensity at
qAFQ acquires two-step behavior [53] with an initial intensity
onset already in phase III′ and a second stronger increase upon
the transition from phase III′ to phase II. This implies that
AFM and AFQ order parameters coexist within phase III′, in
contrast with the purely dipolar phase III [53]. This also gives
us a way to measure both phase transitions at the same wave
vector, which is especially useful for those field directions
where q1 and q2 cannot be reached simultaneously. It is not
clear so far whether the same two-step behavior can be seen
in CeB6, e.g., for B ‖ [111].

Apart from neutron scattering, phase transitions in
Ce1−xLaxB6 can be sensitively probed by resonant x-ray
diffraction, and the associated structural distortions by high-
resolution x-ray diffraction. For instance, the first-order
transition [37] from phase IV to phase III in Ce0.7La0.3B6

has been determined very accurately for B ‖ [110] by the
rhombohedral splitting of the (444) structural Bragg peak
in synchrotron x-ray diffraction [54]. The same transition
was also observed by elastic neutron scattering [53] and by
resonant x-ray diffraction measured with different polariza-
tions [45] as sharp anomalies in the field dependence of the
magnetic Bragg intensity at ( 1

2
1
2

1
2 ) and ( 3

2
3
2

1
2 ), respectively.

Finally, field-driven phase transitions in Ce1−xLaxB6 were
also determined accurately at subkelvin temperatures using
specific heat [53,55,56], resistivity [38–40,57,58], magnetiza-
tion [37,49,59,60], and ultrasonic [41,61–63] measurements.
While there is a good general agreement among all these
results, the measurements are mostly restricted to a few
high-symmetry field directions, so in order to reconstruct the
magnetic phase diagrams as a function of field angle, we
proceed with presenting datasets taken under continuous field
rotation at T = 20 mK.

B. Torque magnetometry

Torque magnetometry is a highly sensitive and power-
ful method used to determine and analyze the magnetic
anisotropy in magnetic materials. The general principle be-
hind torque magnetometry is mounting of a sample on a
flexible cantilever and measuring its elastic deflection caused
by the magnetic torque τ = M(B) × B that is exerted on
the sample with magnetization M by an external magnetic
field B. This method therefore probes the difference in direc-
tion between the magnetization and the applied field, which
results from magnetocrystalline anisotropy. The cantilever is
mounted on one end like a diving board, and its deflection
(proportional to the magnetic torque) is measured capacitively
with high accuracy. This technique was developed by Brooks
et al. at Francis Bitter Magnet Laboratory–MIT in 1987 [65]
and has been adopted by a number of major laboratories
[66–72], including the National High Magnetic Field Labora-
tory (NHMFL), Tallahassee, FL, where Hall documented the
method in detail [73].

Two such cantilevers made of beryllium copper (a non-
magnetic alloy with good elastic properties) with mounted
samples are placed in a ∅12.6 mm cylindrical sample holder
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FIG. 2. Design of the sample holder for cantilever magnetometry
at NHMFL with a pair of cantilevers on opposite sides.

shown in Fig. 2, which is designed so one can measure two
different samples simultaneously [64]. Measurements of the
cantilever capacitance (of the order of 1 pF) are made with an
Andeen-Hagerling 2700A capacitance bridge. The holder is
inserted into a cylindrical socket rotator [74] (Fig. 3), which
is then mounted inside a top-loading dilution refrigerator with
a permanently installed 18/20 T superconducting magnet at
NHMFL, also known as SCM1. It has a base temperature of
20 mK and 400 μW of cooling power at 100 mK.

In the present work, single-crystal samples of Ce1−xLaxB6

with x = 0 (5.5 mg), x = 0.18 (3.6 mg), x = 0.28 (5.0 mg),
and x = 0.5 (5.0 mg) have been investigated. Magnetic torque
was measured in magnetic fields from 0 to 18 T, yet for the
purpose of this paper we are only interested in data below
5 T, because the data at higher fields turned out featureless,
which is consistent with the absence of phase transitions in
our samples in this field range. We made several trial runs to
find the optimal thickness of the beryllium copper cantilevers.
The parent CeB6 compound was measured with a 50-μm can-
tilever, whereas the La-doped samples were initially measured
with 25-μm cantilevers, but these thinner cantilevers were
very sensitive and occasionally touched the base plate already
at intermediate magnetic fields. We replaced them with thicker
ones and in the end, the cantilevers used ranged in thickness
from 25 to 125 μm. We also experimented with gluing two
thinner cantilevers together.

We used a Laue camera and a single-crystal diffractome-
ter to precisely align either [001] or [110] sample direction
along the rotation axis on the 0.18′′ × 0.25′′ cantilever paddle
(see Fig. 2). The samples were attached to the cantilever
paddle with either 〈100〉 or 〈110〉 surfaces using either GE
varnish or LOCTITE R© STYCAST 2850FT. The rotation angle
was controlled by a stepper motor with a resolution of 110
steps per 1◦ angle, giving the rotator probe about 0.02◦ of
resolution. The measurement uncertainties came from how
well the cantilevers were aligned to the holder and how well
the holder was mounted on the probe. To minimize those,
we had a Hall probe sensor mounted on the holder, which
gave us orientation of the holder plate. The sample’s response
was usually the best way to reconfirm its orientation, because
high-symmetry directions in the crystal correspond to the

FIG. 3. Sample holder is mounted in a cylindrical socket rotator
[64]. The magnetic-field direction is vertical.

orientations where the magnetic torque vanishes. The pair of
cantilevers on opposite sides of the sample holder allowed us
to perform measurements in the [110] and [001] planes of field
rotation by measuring two samples mounted in corresponding
orientations simultaneously or to measure two different sam-
ples at a time.

For most of our runs, the samples were rotated at zero
field or at constant fields at the base temperature of 20 mK.
The Hall signal was recorded to give a rough idea of the
cantilever angle with respect to the field. Therefore, our data
files typically recorded torque (arbitrary units), Hall voltage
(V), magnetic field (T), temperature (K), and orientation as
a four-digit readout from the servomotor, which was later
converted to an angle (degrees). Field sweeps were performed
with both increasing and decreasing field, which resulted in
practically identical datasets within experimental uncertain-
ties. Selected angular sweeps at fixed fields were also done to
verify the crystal orientation by the symmetry of the signal.
The field sweeps from 0 to 18 T would take between 3 h at
20 mK and 1 h at T > 0.3 K. The sweep rates were typically
0.2 or 0.3 T/min. Most angular sweeps were run in steps of
2.5◦ to cover an angular range of at least 120◦, i.e., broader
than the irreducible part of the field-angular phase diagram.

Both the magnetic torque τ = ∂F/∂θ and the mag-
netization M = −∂F/∂B are thermodynamic potentials
represented by the first derivatives of the free energy
F (B) [71]. Therefore, the magnetic-field derivative of
the torque is equivalent to the angle derivative of the
magnetization:

∂τ (B, θ )

∂B
= ∂2F

∂B ∂θ
= ∂M(B, θ )

∂θ
. (1)
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FIG. 4. (a) Magnetic-field dependence of the torque, τ (B), for
the magnetic-field direction B ‖ [112], measured on four samples of
Ce1−xLaxB6 (x = 0, 0.18, 0.28, 0.50) during upward and downward
field sweeps, as indicated with arrows. (b) Magnetic-field derivative,
∂τ/∂B, of the data in panel (a). The curves in both panels are
shifted vertically for clarity. Smooth pale lines in the background are
empirical fits to the data. Vertical black arrows mark the estimated
phase transition fields.

The former quantity can be easily obtained experimentally by
differentiating the torque measured during continuous field
sweeps, as illustrated in Fig. 4. It can be then compared with
the latter quantity, which we calculate in ab initio theoretical
models as discussed in Sec. III.

We demonstrate our procedure by presenting the data
measured for a given field direction, B ‖ [112]. The field
dependence of the measured torque and its field derivative for
all four samples are shown in Figs. 4(a) and 4(b), respectively.
The upward and downward field sweeps show only minor
hysteresis effects at some of the field-driven phase transitions,
therefore in the following we restrict our consideration to
upward field sweeps only. The approximate phase transition
fields are indicated with vertical arrows. There is some un-
certainty in deciding on the formal criterion for the transition
field, which appears to be the main reason for minor discrep-
ancies in the published results obtained by different methods.
In our case, steplike transitions (e.g., transition from phase
III to phase III′) are best defined by the maximum in ∂τ/∂B,
whereas kinklike transitions (e.g., the transition to phase II)
coincide with the maximal curvature of the τ (B) curve or
the steepest slope in ∂τ/∂B. For some of the transitions, this
choice can be ambiguous, especially for closely spaced or
broadened transitions. To automate the extraction of phase
transition fields from the data, we approximated the measured

curves with empirical fitting functions that are shown in Fig. 4
with smooth pale-colored lines in the background.

The field-angular phase diagrams that resulted from our
torque magnetometry measurements with the field rotated in
the B ⊥ [110] plane are shown in Fig. 5 as color maps of
the field derivative of the magnetic torque, ∂τ/∂B. The fitted
phase transitions and the reference data from our neutron scat-
tering measurements and from earlier publications are shown
as data points. In addition, Fig. 6 also shows a field-angular
map for CeB6 in the B ⊥ [001] plane. One can see that the
magnetic torque follows C4 symmetry in the ab plane within
the uncertainty of the measurements, as expected in the cubic
symmetry. There are known examples among cubic systems
where magnetic or transport properties violate the lattice sym-
metry, for instance due to an anisotropic distribution of lattice
defects during crystallization [75] or weak structural distor-
tions [18,76]. Apparently, CeB6 does not suffer from such
complications, so that the cubic symmetry of the magnetiza-
tion holds to a good approximation.

The AFM phases III and III′ are the most anisotropic. Phase
III remains most stable for B ‖ [001], where it gets addition-
ally stabilized by La substitution, whereas phase III′ has the
largest stability range for B ‖ [111]. Phase II is most stable
(has the lowest onset field) for B ‖ [110]. This is consistent
with changes in the easy axis of magnetization [26,77,78],
which first points along [110] in small fields below the
domain-selection transition, then changes to [001] in phase
III above the domain-selection field, then switches briefly to
[111] in phase phase III′, and in higher fields changes again
to [110] in phase II. We also observe that for B ‖ [110],
the stability range of phase III′ is nearly vanishing, but it
increases with La substitution and reaches approximately 1 T
in Ce0.7La0.3B6.

The approximate region occupied with phase IV is marked
with white dashed lines and gray shading in Figs. 5(c2) and
5(d2). In Ce0.72La0.28B6 it is seen as a sharp step in the
magnetic torque at low fields [see Fig. 5(c1)] and nearly
coincides with the domain-selection transition of phase III.
The proximity of the two transitions adds some uncertainty
to the identification of the corresponding contours in this
region of the phase diagram, especially along the [110] field
direction. Here thermodynamic measurements by Jang et al.
done on a piece of the same sample [53] show an anomaly
in the 0.2 K magnetocaloric sweep, centered around 0.7 T,
with a barely resolved two-peak structure. It coincides with
an anomaly in the B dependence of the magnetic Bragg in-
tensity at ( 1

2
1
2

1
2 ). Both anomalies look qualitatively identical

to those associated with the domain motion in phase III at
lower La concentrations, where phase IV is absent [53]. On
the other hand, phase IV in Ce0.7La0.3B6 is suppressed at a
somewhat higher field between 0.95 and 0.10 T, judging by
the direct polarization-dependent resonant x-ray diffraction
measurements [45] and by the splitting of the (444) structural
Bragg peak in the synchrotron diffraction data [54]. There is
a second anomaly in the B dependence of the ( 1

2
1
2

1
2 ) magnetic

intensity in our neutron data at roughly the same field [53],
suggesting that the AFM (phases III) and AFO (phase IV)
order parameters must coexist in a narrow field range, and
that the selection of AFM domains occurs inside phase IV for
B ‖ [110], but outside phase IV for B ‖ [001]. This suggestion

214415-5



D. S. INOSOV et al. PHYSICAL REVIEW B 103, 214415 (2021)

FIG. 5. Field-angular magnetic phase diagrams of Ce1−xLaxB6 (from top to bottom: x = 0, 0.18, 0.28, 0.50) as measured by torque
magnetometry at T = 20 mK. The field is rotated in the [110] plane. The field derivative of the magnetic torque, ∂τ/∂B, measured in field
sweeps upon increasing the field, is plotted for every sample on the left as a color map. The corresponding field-angular phase diagrams in
polar coordinates are presented on the right. The angular dependence for CeB6 at T = 1.4 K from Ref. [26] and the data for high-symmetry
directions from our neutron-scattering measurements (Refs. [21,53], and present work) as well as from Refs. [21,29,37–39,41,45,49,54,58,60–
62] are overlaid for comparison.
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FIG. 6. Polar plot of the field-angular magnetic phase diagram
of CeB6 measured at T = 20 mK in the C4-symmetric field plane,
B ⊥ [001], using torque magnetometry. The color map shows the
field derivative of the magnetic torque, ∂τ/∂B, measured in field
sweeps upon increasing the field. The data points show fitting results
both for the upward (bottom-right sector) and downward (top-left
sector) field sweeps, which are essentially identical within the exper-
imental error. The data from our neutron-scattering measurements
and from Refs. [21,26,37,49,53,61] are overlaid for comparison (for
the meaning of the symbols, see Fig. 5).

requires a direct verification by measurements of the Bragg
intensity at q1 as a function of field along [110].

Finally, in Ce0.5La0.5B6 the region occupied by phase IV
becomes nearly isotropic with respect to the field rotation
[55], whereas phase III is suppressed for all field directions
except in the vicinity of [001] [61], where it still exists
in the form of an elongated lobe in Fig. 5(d2), which is
expected to persist up to x ≈ 0.7 judging from previously
published resistivity data [40]. In all other field directions,
our torque magnetometry data reveal two phase transitions,
which most likely delineate the much reduced stability region
of phase III′. The data contained in previous publications
[38,40,53,56,58,62] were restricted to B ‖ [110] and [001]
and therefore could not reveal the existence of phase III′ at
x = 0.5 or higher, which can be clearly seen only around
B ‖ [111] or [112]. It would be desirable to verify the mag-
netic structure of this phase in follow-up works by diffraction
measurements.

III. THEORY

After we have presented the experimental field-angular
magnetic phase diagrams of Ce1−xLaxB6 and identified the
corresponding phases, it is important to understand what es-
sential physics determines their strong anisotropy. Is it really
necessary to understand the magnetic structure and micro-
scopic origin of every phase to predict the approximate shape
of its stability region? Is the anisotropy consistent with cubic
lattice symmetry, or can it serve as evidence for electronic or
structural symmetry breaking? To answer these questions, in
this section we consider a simple theoretical model consisting
of Ce3+ ions in the cubic crystal field of the surrounding B24

cluster in the form of a truncated cube, which interact by a

single nearest-neighbor exchange interaction. By calculating
the crystal-field scheme of this model in an applied mag-
netic field, we obtain the field dependence of magnetization,
which can be compared directly with the experimental phase
diagrams.

A. Ab initio calculations of the local anisotropy in CeB6

1. DFT level

As the first step, we have modeled equilibrium geome-
try and Bader charges in CeB6 in the framework of density
functional theory (DFT) using VASP v.5 suit (see Appendix
A). Figure 7 summarizes the obtained results. The spin-
polarized solution predicts a normal metallic ground state
[Fig. 7(b)] in accordance with the available literature data
[79]. The band behavior around the Fermi level is dictated
by 4f orbitals with a single electron, which are also respon-
sible for the isotropic on-site magnetization density plotted in
Fig. 7(a).

2. CASSCF level

Although the mean-field DFT + U result correctly pre-
dicts the 4f 1 configuration of CeB6, the exact 4f multiplet
(CeIII, 2F 5/2) structure cannot be recovered. This information
is crucial for local and extended anisotropy modeling. To
have a proper model for multiplet structures and CEF parame-
ters, we performed multiconfigurational complete active space
self-consistent field (CASSCF) quantum chemistry computa-
tions using OPENMOLCAS code [80]. Additional details of the
methods used in our ab initio calculations can be found in
Appendix A.

We used a [CeB24]3+ cluster model with all boron atoms at
the vertices of the truncated cube substituted by point charges
of −1.5e. The charge value is picked empirically, so that the
energy difference between the ground-state �8 quartet and
the excited �7 doublet matches the energy of the �8 → �7

CEF transition (∼46 meV or 372 cm−1 at room temperature)
observed with inelastic neutron scattering and Raman spec-
troscopy [81–85]. The obtained ab initio spin-orbit coupling
(SOC) states were analyzed in terms of projection on the
lowest-energy atomic multiplet (J = 5/2). Furthermore, the
ab initio CEF parameters B q

k (in Stevens-operator notation
[86]) were derived for the model Hamiltonian design (see
Appendix B).

The decomposition of SOC states in the |J, mJ〉 ba-
sis and the g-tensor structure for the lowest-energy atomic
multiplet are summarized in Table I (the full list of
SOC state energies is provided in Table II in Appendix
B). The ground-state quartet is composed of two dou-
blets, D1 and D2, that nearly coincide in energy (sepa-
rated by a negligibly small energy gap of 0.015 cm−1)
and are composed in equal measure of |±� ±1/2〉 and
|±� ±5/2〉 projections of the total angular momentum J. This
ground-state quartet Q1 is characterized by an isotropic natu-
ral spin density plotted in Fig. 7(c).

Using the derived ab initio CEF parameters B q
k listed in

Table III in Appendix B, we can write down the follow-
ing model Hamiltonian for a single Ce3+ ion in the CeB6
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FIG. 7. (a) Isosurfaces of the magnetization density in CeB6 from DFT + U/PBE/PAW calculations. (b), (d) Band structures and projected
densities of states for CeB6 and LaB6 systems. (c) Natural spin density for the ground-state quartet calculated at the CASSCF level of theory.

system:

Ĥm1 = ĤCFCe1 + ĤZee =
∑

k=2,4,6

k∑

q=−k

B q
k Ô q

k + μBĝ · Ĵ · B (2)

in terms of the Stevens operators Ô q
k [86]. After including

exchange interactions j12 between the first-nearest-neighbor
Ce3+ ions, the Hamiltonian takes the form [87]

Ĥm2 = ĤCFCe1 + ĤCFCe2 + ĤZee − 2j12 ĴCe1ĴCe2. (3)

Here ĤCFCe1,2 are the single-ion CF Hamiltonians for the two
Ce sites, described by the corresponding ab initio crystal-
field parameters B q

k in Stevens notation, and ĤZee is the
Zeeman energy, both defined according to Eq. (2). The ad-
ditional term −2j12 ĴCe1ĴCe2 stands for the exchange energy

between nearest-neighbor localized lanthanide spins ĴCe1 and
ĴCe2.

The model given by Eq. (2) helps to uncover the spa-
tial structure of the single-ion magnetic anisotropy, which is
shown in Fig. 8. Expectedly, the anisotropy of the state mag-
netization MDi ∝ ∂EDi (B)/∂B|B→0 for the D1 and D2 doublets
in Figs. 8(b) and 8(c) inherits the shape of the natural spin
density for the ground-state quartet in Fig. 7(c). The total
magnetization M(B, θ ), plotted in Fig. 8(d) for B ⊥ [001] as
a function of the magnitude and direction of the magnetic
field in the ab plane, has a fourfold symmetry with minima
in magnetization along the 〈100〉 and maxima along the 〈110〉
directions in the crystal. The magnetic-field derivative of the
torque, ∂τ (B, θ )/∂B, which can be also calculated by differ-
entiating M(B, θ ) with respect to the field angle θ , acquires

TABLE I. Decomposition of SOC states of the low-energy multiplet of Ce3+ in the |J, mJ〉 basis for doublets (D1–D3) and for the �8

quartet- �7 doublet (Q1, D3), including the corresponding g tensors.

SOC energy

State (cm−1) (meV) |±5/2〉 |±3/2〉 |±1/2〉 |∓1/2〉 |∓3/2〉 |∓5/2〉 gx gy gz

D1 0.000 0.65 0.35 2.67 2.24 0.94
D2 0.015 0.002 0.48 0.07 0.10 0.34 1.18 1.61 3.01
D3 363 45.0 0.83 0.17 1.50 1.50 1.50

Q1 ∼0.0a 1.00b 1.00b 1.00b

D3 363 45.0 0.83 0.17 1.50 1.50 1.50

aWithin the proposed theoretical framework we observed a tiny gap of 0.015 cm−1 ≈ 2 μeV.
bNo twofold degeneracy estimated for effective S̃ = 3/2.
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FIG. 8. (a) A schematic Zeeman diagram for the single-ion Ĥm1 model in different orientations of B on a spherical grid. The shading covers
an energy range of the Zeeman-split states due to the field-angular anisotropy of the g factors. (b), (c) Anisotropy of the state magnetization
MDi ∝ ∂EDi (B)/∂B|B→0 for the D1 and D2 doublets (see Tables II and III in Appendix B), presented as color maps on a unit sphere and in a polar
projection onto the 2D plane, respectively. (d),(e) Polar maps of the magnetization, M(B, θ ) ∝ ∂F/∂B, and the corresponding magnetic-field
derivative of the torque, ∂τ/∂B ∝ ∂2F/∂θ∂B ∝ ∂M(B, θ )/∂θ , respectively, as a function of magnetic-field strength B from 0 to 5 T and angle
θ in the ab plane for B ⊥ [001].

the sign-changing sin θ cos θ angular dependence presented in
Fig. 8(e). In the single-ion case, the field dependence of this
quantity is trivial.

3. Two-site model

As the next step, we consider two interacting nearest-
neighbor Ce3+ sites described by Eq. (3). The results of
the corresponding calculation are presented in Fig. 9. The
combination of ground-state quartets on the two Ce3+ ions
results in 16 eigenstates of the Hamiltonian Ĥm1, and a heav-
ily crowded Zeeman diagram shown in Fig. 9(a) emerges
in an applied magnetic field. Here we superposed multiple
orientations of B to visualize the ranges of eigenstate ener-
gies that would result as the field is rotated with respect to
the crystal. This Zeeman diagram reveals two level cross-
ings (indicated with black arrows), which represent transitions
between different quantum-state compositions of the local
ground state, starting with the original AFM configuration
below 1 T. They occur between 1 and 3 T, where phase transi-
tions between different long-range-ordered magnetic ground
states are observed experimentally (Sec. II). Similarly to the
single-ion system, magnetization M(B, θ ) ∝ ∂F/∂B can be
calculated, which now acquires a nontrivial field dependence
with several steps, as shown in Fig. 9(b), that appear whenever
the composition of the ground state changes due to a level
crossing.

The calculated field dependence of the magnetization for
three high-symmetry directions of the magnetic field are com-
pared in Fig. 9(c). The magnetization curves are qualitatively
similar to the experimental ones, which we reproduce in
Fig. 9(d) from Kunimori et al. [26]. Apparently, the two-site
model correctly reproduces the change in the easy axis of
the magnetization from [001] at low fields through [111] at
intermediate fields to [110] at high fields. This is remark-

able, because the magnetization steps in the experimental data
correspond to transitions between long-range-ordered phases
III, III′, and II, yet the magnetic unit cells of all these three
phases are much larger than the size of our two-site cluster. It
is therefore clear that our simple theoretical model is unable
to describe the structure of magnetically ordered phases, and
still it can reproduce the transition fields between them and
the corresponding anisotropic behavior of the magnetization
at least qualitatively.

The magnetic-field derivative of the torque, which is
measured in experiment, can be calculated from the angle
dependence of the magnetization according to Eq. (1). In
Figs. 9(e) and 9(f), we plot both magnetization M and its
angle derivative, ∂M(B, θ )/∂θ , as a function of magnetic
field rotated in the plane orthogonal to [001] and [110], re-
spectively. These polar plots bear a striking similarity to the
corresponding experimental maps in Figs. 5 and 6, qualita-
tively reproducing not only the magnitude of the anisotropy
(approximately a factor of 2 in both cases), but even the shape
of the resulting transitions in field space. Both the extended
lobe protruding in the 〈001〉 directions and the local minima
along the 〈110〉 and 〈111〉 directions with a small local maxi-
mum between them are captured by the calculation. However,
our theoretical model underestimates the number of transition,
which is not surprising in view of the small size of the cluster
with only two Ce3+ ions.

In fact, the level of agreement between experiment and
theory is strikingly good for our oversimplified model. Indeed,
the experimental features observed in torque magnetometry
correspond to phase transitions between long-range-ordered
AFM or AFQ states. Not only is a local two-site model unable
to realize long-range order, but even the sizes of magnetic
unit cells in phases II, III, and III′ are considerably larger
than two atoms. For instance, the zero-field ground state of
CeB6 (phase III) is known to represent a double-q AFM order
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FIG. 9. (a) Superposed Zeeman diagrams and (b) a set of
magnetization curves obtained in the two-site model (Ĥm2) for
magnetic-field scans up to 5 T along different directions in the B ⊥
[110] plane. The black arrows in panel (a) indicate ground-state level
crossings responsible for the appearance of magnetization steps.
(c) Calculated magnetic-field dependence of the total magnetization
in the two-site model (Ĥm2) for the three high-symmetry directions
in the cubic crystal. (d) Experimental magnetization curves, repro-
duced with permission from Ref. [26] for comparison. (e),(f) The
total magnetization M(B, θ ) and its angle derivative ∂M(B, θ )/∂θ ,
which is equivalent to the experimentally measured magnetic-field
derivative of the torque ∂τ/∂B, presented as polar maps as a function
of magnetic field strength B from 0 to 5 T and its in-plane direction
θ for B ⊥ [001] and B ⊥ [110], respectively.

characterized by a pair of propagation vectors, q1 = ( 1
4

1
4 0)

and q2 = ( 1
4

1
4

1
2 ), which implies a magnetic unit cell with

4 × 4 × 2 = 32 magnetic ions [23,25]. An ab initio quantum-
chemistry calculation of such a cluster is unfeasible, as it
would have to consider 432 ≈ 1.8 × 1019 eigenstates of the
full Ĥm16 Hamiltonian that could be constructed by extending
Eq. (3) by analogy to a cluster of 32 magnetic atoms. If such
a calculation was possible, we expect that it would do a better
job of distinguishing different magnetic ground-state config-
urations and in reproducing the sequence of metamagnetic
phase transitions observed in experiments more accurately.

An inevitable conclusion from these considerations is that
the anisotropy and shape of phase boundaries in field-angular
space has a much more fundamental origin than the ordered
states themselves. While they cannot be captured in the single-
ion model, inclusion of just a single interaction with the
nearest neighbors turns out sufficient for a qualitative descrip-
tion of the main features in the field-angular phase diagram.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated experimentally the
evolution of the field-angular phase diagrams of cerium hexa-
boride and its Ce1−xLaxB6 solid solutions with increasing La
concentration, 0 � x � 0.5, which were extensively studied
previously but only for a few selected high-symmetry field
directions. Our results show excellent agreement with most of
the previously published studies on the magnetic properties of
pure and La-doped CeB6 but in addition reveal some impor-
tant details of the phase diagrams that only become clear due
to the continuous field rotation. In particular, we demonstrate
that the single-q AFM phase III′ persists at least up to 50% La
doping level for field directions 〈112〉 and 〈111〉, whereas the
double-q phase III exists only in narrow lobes surrounding the
B ‖ [001] and equivalent field directions.

We have also demonstrated that a local model consisting
of two Ce3+ ions in the cubic crystal field with a single
effective interaction between them can qualitatively capture
the anisotropic features of the field-angular phase diagram
of cerium hexaboride without violating the underlying cubic
symmetry of the lattice. Clearly, such a primitive model is
insufficient to describe the ordered states in Ce1−xLaxB6, yet
it can capture transitions between different local CEF ground
states stabilized in magnetic field that ultimately participate
in magnetic ordering. Consequently, under the assumption
that the effective interactions between different degrees of
freedom on neighboring ions are field independent, stabil-
ity ranges of different ordered phases tend to inherit those
of the local ground states, notwithstanding the microscopic
structure of these phases that can depend on further-neighbor
interactions and other details not captured by the local model.
We therefore conclude that the anisotropy of phase bound-
aries separating long-range-ordered magnetic phases in the
field-angular phase diagram of CeB6 are of much more funda-
mental origin than these phases themselves and are therefore
much easier to describe. Remarkably, even an oversimpli-
fied purely local two-site model that does not break the
cubic lattice symmetry and neglects the metallic character of
the compound appears sufficient to qualitatively capture the
anisotropic shape of the phase stability regions in the field-
angular phase diagram.
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TABLE II. Parameters of the SOC states for the [CeB24]3+ clus-
ter at the DKH2/CAS(1,7)/RASSI-SO/VDZ-RCC level of theory.

SOC-id Energy (eV) Energy (cm−1) J

1 0.0000000000 0.0000 2.5
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APPENDIX A: THEORETICAL METHODS AND MODELS

1. DFT modeling

All structures at the DFT + U/PBE/PAW level of theory
were optimized using projector augmented-wave method as
implemented in the VASP v.5 code and the standard pseudopo-
tential [80,88,89].

2. Ab initio modeling

The first-principles CASSCF calculations were done at
the DKH2/CAS(1,7)/RASSI-SO/VDZ-RCC level of theory
using OPENMOLCAS [90,91]. In the complete active space

TABLE III. B q
k parameters in Stevens-operator notation for the

crystal-field Hamiltonian of the J = 5/2 multiplet.

k q Bq
k (cm−1)

2 −2 −0.32372802917775E-05
2 −1 −0.10491200943645E-04
2 0 0.60504190785733E-01
2 1 −0.55654827296684E-02
2 2 −0.14444563753813E-02
4 −4 0.73574190082391E-07
4 −3 0.18700751961646E-06
4 −2 0.31185896445511E-07
4 −1 0.63451704654471E-07
4 0 −0.10039210366818E+01
4 1 −0.41719162424810E-04
4 2 0.25009971775102E-04
4 3 −0.13176446112330E-03
4 4 −0.50681897587772E+01

(CAS) approach, the total spin of the 4f shell with one elec-
tron is S = 1/2. Having solved the spin-free CAS problem,
all seven roots were used in further state interaction modeling
using the SOC Hamiltonian. Finally, for all doubly degenerate
SOC states the g tensors were computed using first-order
perturbation theory. SOC-states decomposition in J = 5/2
multiplet and the ab initio CEF scheme were derived using
the SINGLE_ANISO module [92].

3. Model Hamiltonians

The model Hamiltonian was solved, and the magnetic
properties of the system were analyzed using PHI code and
in-house Python scripts [93]. The generalized model Hamil-
tonian for the extended system model was solved using
MCPHASE libraries [87].

APPENDIX B: CALCULATED PARAMETERS OF THE CEF
STATE FOR CeB6

Tables II and III summarize the results of ab initio mod-
eling including energies and Stevens parameters of all SOC
states for the J = 5/2 multiplet.
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