000906356 001__ 906356 000906356 005__ 20240711101515.0 000906356 0247_ $$2Handle$$a2128/30845 000906356 0247_ $$2URN$$aurn:nbn:de:0001-2022040505 000906356 020__ $$a978-3-95806-602-1 000906356 037__ $$aFZJ-2022-01385 000906356 041__ $$aEnglish 000906356 1001_ $$0P:(DE-Juel1)172722$$aCerniauskas, Simonas$$b0$$eCorresponding author$$ufzj 000906356 245__ $$aIntroduction Strategies for Hydrogen Infrastructure$$f- 2021-10-08 000906356 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2021 000906356 300__ $$aviii, 186 S. 000906356 3367_ $$2DataCite$$aOutput Types/Dissertation 000906356 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook 000906356 3367_ $$2ORCID$$aDISSERTATION 000906356 3367_ $$2BibTeX$$aPHDTHESIS 000906356 3367_ $$02$$2EndNote$$aThesis 000906356 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1648114666_1005 000906356 3367_ $$2DRIVER$$adoctoralThesis 000906356 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Energie & Umwelt / Energy & Environment$$v561 000906356 502__ $$aRWTH Aachen, Diss., 2021$$bDissertation$$cRWTH Aachen$$d2021 000906356 520__ $$aEfforts to alleviate climate change and curb greenhouse gas (GHG) emissions increasingly anticipate the widespread use of hydrogen for transportation and industrial purposes. Given the increased focus on hydrogen infrastructure development, it is essential to devise measures capable of assessing and mapping strategic choices to guide the further development of the hydrogen market. The goal of this work is to investigate what infrastructure and demand-side strategies best facilitate hydrogen infrastructure development for the transportation and industrial sectors in Germany and thus enable the transition towards a cost-optimized system in the long term. To achieve these goals, a spatially-resolved model to represent relevant features of a hydrogen infrastructure is developed and populated with country-specific data on hydrogen demand allocation and energy infrastructure. The approach incorporates four different aspects of the transition to a hydrogen-based system: transformation of the hydrogen market, reconfiguration of hydrogen production and storage, the evolution of a delivery infrastructure and the changeover of refueling stations. It was found that gaseous (GH2) and liquid (LH2) hydrogen trailers, as well as utilization of the existing infrastructure, such as the use of aging wind power plants and the reassignment of natural gas pipelines, constitute the most attractive pathways for the introduction of a hydrogen infrastructure. A high concentration of supply is favored by LH2 delivery, whereas GH2 pathways benefit from growing demand concentration in industrial and population centers. Accordingly, GH2 pipeline and trailer delivery should be the main focus of infrastructure development, while LH2 transport is better used as a supplementary alternative to optimize the utilization of the existing LH2 infrastructure and seaborne imports. It was shown that cost-competitive hydrogen delivery for transportation could be attained by 2030, and broad market adoption of hydrogen in transport is required if cost-competitive hydrogen delivery for industry is to be achieved. 000906356 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0 000906356 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1 000906356 588__ $$aDataset connected to DataCite 000906356 8564_ $$uhttps://juser.fz-juelich.de/record/906356/files/Energie_Umwelt_561.pdf$$yOpenAccess 000906356 909CO $$ooai:juser.fz-juelich.de:906356$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire 000906356 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000906356 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000906356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172722$$aForschungszentrum Jülich$$b0$$kFZJ 000906356 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0 000906356 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1 000906356 9141_ $$y2022 000906356 920__ $$lyes 000906356 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0 000906356 9801_ $$aFullTexts 000906356 980__ $$aphd 000906356 980__ $$aVDB 000906356 980__ $$aUNRESTRICTED 000906356 980__ $$abook 000906356 980__ $$aI:(DE-Juel1)IEK-3-20101013 000906356 981__ $$aI:(DE-Juel1)ICE-2-20101013