001     906364
005     20240715202022.0
024 7 _ |a 10.1016/j.jbc.2021.100662
|2 doi
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
024 7 _ |a 2128/30755
|2 Handle
024 7 _ |a altmetric:103825505
|2 altmetric
024 7 _ |a pmid:33862085
|2 pmid
024 7 _ |a WOS:000672866400633
|2 WOS
037 _ _ |a FZJ-2022-01393
082 _ _ |a 540
100 1 _ |a Röllen, Katrin
|0 P:(DE-Juel1)157880
|b 0
245 _ _ |a The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins
260 _ _ |a Bethesda, Md.
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721025389_11706
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Granzin, Joachim
|0 P:(DE-Juel1)131965
|b 1
700 1 _ |a Remeeva, Alina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Davari, Mehdi D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 4
700 1 _ |a Nazarenko, Vera V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kovalev, Kirill
|b 6
700 1 _ |a Bogorodskiy, Andrey
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Borshchevskiy, Valentin
|0 P:(DE-Juel1)191126
|b 8
|u fzj
700 1 _ |a Hemmer, Stefanie
|0 P:(DE-Juel1)180384
|b 9
700 1 _ |a Schwaneberg, Ulrich
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gordeliy, Valentin
|0 P:(DE-Juel1)131964
|b 11
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 12
700 1 _ |a Batra-Safferling, Renu
|0 P:(DE-Juel1)131950
|b 13
700 1 _ |a Gushchin, Ivan
|b 14
700 1 _ |a Krauss, Ulrich
|0 P:(DE-Juel1)131482
|b 15
|e Corresponding author
773 _ _ |a 10.1016/j.jbc.2021.100662
|g Vol. 296, p. 100662 -
|0 PERI:(DE-600)1474604-9
|p 100662 -
|t The journal of biological chemistry
|v 296
|y 2021
|x 0021-9258
856 4 _ |u https://juser.fz-juelich.de/record/906364/files/Invoice_OAD0000114572.pdf
856 4 _ |u https://juser.fz-juelich.de/record/906364/files/1-s2.0-S0021925821004506-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906364
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)191126
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131964
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)131950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)131482
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 1
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21