000906378 001__ 906378
000906378 005__ 20230123110601.0
000906378 0247_ $$2doi$$a10.1038/s42003-022-03073-w
000906378 0247_ $$2Handle$$a2128/30806
000906378 0247_ $$2pmid$$a35177755
000906378 0247_ $$2WOS$$aWOS:000757506400006
000906378 0247_ $$2altmetric$$aaltmetric:123293881
000906378 037__ $$aFZJ-2022-01407
000906378 082__ $$a570
000906378 1001_ $$0P:(DE-Juel1)162109$$aReid, Andrew T.$$b0$$eCorresponding author
000906378 245__ $$aTract-specific statistics based on diffusion-weighted probabilistic tractography
000906378 260__ $$aLondon$$bSpringer Nature$$c2022
000906378 3367_ $$2DRIVER$$aarticle
000906378 3367_ $$2DataCite$$aOutput Types/Journal article
000906378 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646125147_5297
000906378 3367_ $$2BibTeX$$aARTICLE
000906378 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906378 3367_ $$00$$2EndNote$$aJournal Article
000906378 520__ $$aDiffusion-weighted neuroimaging approaches provide rich evidence for estimating the structural integrity of white matter in vivo, but typically do not assess white matter integrity for connections between two specific regions of the brain. Here, we present a method for deriving tract-specific diffusion statistics, based upon predefined regions of interest. Our approach derives a population distribution using probabilistic tractography, based on the Nathan Kline Institute (NKI) Enhanced Rockland sample. We determine the most likely geometry of a path between two regions and express this as a spatial distribution. We then estimate the average orientation of streamlines traversing this path, at discrete distances along its trajectory, and the fraction of diffusion directed along this orientation for each participant. The resulting participant-wise metrics (tract-specific anisotropy; TSA) can then be used for statistical analysis on any comparable population. Based on this method, we report both negative and positive associations between age and TSA for two networks derived from published meta-analytic studies (the "default mode" and "what-where" networks), along with more moderate sex differences and age-by-sex interactions. The proposed method can be applied to any arbitrary set of brain regions, to estimate both the spatial trajectory and DWI-based anisotropy specific to those regions.
000906378 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000906378 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906378 7001_ $$0P:(DE-Juel1)172024$$aCamilleri, Julia$$b1$$ufzj
000906378 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2
000906378 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3$$ufzj
000906378 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-022-03073-w$$gVol. 5, no. 1, p. 138$$n1$$p138$$tCommunications biology$$v5$$x2399-3642$$y2022
000906378 8564_ $$uhttps://juser.fz-juelich.de/record/906378/files/s42003-022-03073-w.pdf$$yOpenAccess
000906378 909CO $$ooai:juser.fz-juelich.de:906378$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906378 9141_ $$y2022
000906378 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-06-15
000906378 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-06-15
000906378 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906378 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-06-15
000906378 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-06-15
000906378 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906378 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-06-15
000906378 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN BIOL : 2021$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:52:02Z
000906378 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:52:02Z
000906378 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-10-13T14:52:02Z
000906378 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-12
000906378 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN BIOL : 2021$$d2022-11-12
000906378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162109$$aForschungszentrum Jülich$$b0$$kFZJ
000906378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172024$$aForschungszentrum Jülich$$b1$$kFZJ
000906378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
000906378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
000906378 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000906378 920__ $$lyes
000906378 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000906378 980__ $$ajournal
000906378 980__ $$aVDB
000906378 980__ $$aUNRESTRICTED
000906378 980__ $$aI:(DE-Juel1)INM-7-20090406
000906378 9801_ $$aFullTexts