000906383 001__ 906383
000906383 005__ 20230123110601.0
000906383 0247_ $$2doi$$a10.1021/acs.macromol.1c02324
000906383 0247_ $$2ISSN$$a0024-9297
000906383 0247_ $$2ISSN$$a1520-5835
000906383 0247_ $$2Handle$$a2128/30939
000906383 0247_ $$2altmetric$$aaltmetric:123426684
000906383 0247_ $$2WOS$$aWOS:000772188000010
000906383 037__ $$aFZJ-2022-01411
000906383 041__ $$aEnglish
000906383 082__ $$a540
000906383 1001_ $$0P:(DE-Juel1)176630$$aKostyurina, Ekaterina$$b0$$eCorresponding author
000906383 245__ $$aControlled LCST Behavior and Structure Formation of Alternating Amphiphilic Copolymers in Water
000906383 260__ $$aWashington, DC$$bSoc.$$c2022
000906383 3367_ $$2DRIVER$$aarticle
000906383 3367_ $$2DataCite$$aOutput Types/Journal article
000906383 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668521281_2649
000906383 3367_ $$2BibTeX$$aARTICLE
000906383 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906383 3367_ $$00$$2EndNote$$aJournal Article
000906383 520__ $$aAmphiphilic polymers show a rich self-assembly behavior in aqueous solutions. In experimental investigations statistical copolymer or block copolymer architectures are usually investigated, because of their ease of synthesis or their structural analogy to surfactants. A copolymer structure that links the two architectures are alternating copolymers, which are easily accessible by polycondensation reactions. Using alternating hydrophilic and hydrophobic building blocks with varying length allows a systematic variation between statistical and multi-block architectures. We synthesized alternating amphiphilic copolymers as polyesters using hydrophobic dicarboxylic acids (C4 – C20) and hydrophilic polyethylene glycol (PEG) units (EG3 – EG1000). Copolymers with long EG units were made accessible with the help of a newly developed esterification process. The solution properties of the amphiphilic copolymers feature a lower critical solution temperature (LCST) behavior in water, which can be systematically varied over a wide range from 3 – 83°C by adjusting the lengths of the Cn- and EGm–units. We find that the transition temperature depends linearly on the hydrophobic unit length Cm and logarithmically on the hydrophilic length EGn. In the one-phase region the PEG copolymer coils are more compact compared to the respective PEG homopolymers due to hydrophobic interactions between the hydrophobic units leading to loop formation. For shorter PEG-units the copolymers form micellar structures consisting only of a few copolymer chains. The micellar cores consist of hydrophobic regions containing only a few dicarboxylic acid units, embedded in a PEG-rich and water-poor matrix. The cores are surrounded by a rather diluted corona of PEG chains. Further decreasing the PEG unit length leads to the formation of highly swollen gels consisting of networks of interconnected micelles. These can self-assemble to form highly ordered liquid crystalline cubic phases. The study demonstrates how the structure of alternating amphiphilic copolymers can be systematically varied to adjust thermal solution properties such as the LCST over a wide range, as well as the self-assembly properties varying between single chain, micelle, gels and highly ordered lyotropic liquid crystals.
000906383 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000906383 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000906383 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906383 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000906383 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000906383 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000906383 7001_ $$0P:(DE-HGF)0$$aDe Mel, Judith U.$$b1
000906383 7001_ $$0P:(DE-HGF)0$$aVasilyeva, Alexandra$$b2
000906383 7001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b3
000906383 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b4
000906383 7001_ $$0P:(DE-Juel1)172746$$aDulle, Martin$$b5
000906383 7001_ $$0P:(DE-Juel1)172014$$aBarnsley, Lester$$b6
000906383 7001_ $$0P:(DE-Juel1)172658$$aFörster, Stephan$$b7
000906383 7001_ $$aSchneider, Gerald J.$$b8
000906383 7001_ $$0P:(DE-Juel1)130542$$aBiehl, Ralf$$b9
000906383 7001_ $$0P:(DE-Juel1)130501$$aAllgaier, Jürgen$$b10$$eCorresponding author
000906383 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.1c02324$$gp. acs.macromol.1c02324$$n5$$p1552–1565$$tMacromolecules$$v55$$x0024-9297$$y2022
000906383 8564_ $$uhttps://juser.fz-juelich.de/record/906383/files/AAP-Water_SI_final.pdf$$yRestricted
000906383 8564_ $$uhttps://juser.fz-juelich.de/record/906383/files/AAP-water_manuscript_final.pdf$$yPublished on 2022-02-15. Available in OpenAccess from 2023-02-15.
000906383 8564_ $$uhttps://juser.fz-juelich.de/record/906383/files/acs.macromol.1c02324.pdf$$yRestricted
000906383 909CO $$ooai:juser.fz-juelich.de:906383$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000906383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176630$$aForschungszentrum Jülich$$b0$$kFZJ
000906383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b3$$kFZJ
000906383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b4$$kFZJ
000906383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172746$$aForschungszentrum Jülich$$b5$$kFZJ
000906383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172658$$aForschungszentrum Jülich$$b7$$kFZJ
000906383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130542$$aForschungszentrum Jülich$$b9$$kFZJ
000906383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130501$$aForschungszentrum Jülich$$b10$$kFZJ
000906383 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000906383 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000906383 9141_ $$y2022
000906383 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000906383 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000906383 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000906383 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-28
000906383 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-11$$wger
000906383 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000906383 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000906383 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000906383 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000906383 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000906383 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2021$$d2022-11-11
000906383 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000906383 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000906383 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2021$$d2022-11-11
000906383 920__ $$lyes
000906383 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000906383 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000906383 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000906383 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000906383 980__ $$ajournal
000906383 980__ $$aVDB
000906383 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000906383 980__ $$aI:(DE-588b)4597118-3
000906383 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000906383 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000906383 980__ $$aUNRESTRICTED
000906383 9801_ $$aFullTexts