001     906383
005     20230123110601.0
024 7 _ |a 10.1021/acs.macromol.1c02324
|2 doi
024 7 _ |a 0024-9297
|2 ISSN
024 7 _ |a 1520-5835
|2 ISSN
024 7 _ |a 2128/30939
|2 Handle
024 7 _ |a altmetric:123426684
|2 altmetric
024 7 _ |a WOS:000772188000010
|2 WOS
037 _ _ |a FZJ-2022-01411
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kostyurina, Ekaterina
|0 P:(DE-Juel1)176630
|b 0
|e Corresponding author
245 _ _ |a Controlled LCST Behavior and Structure Formation of Alternating Amphiphilic Copolymers in Water
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668521281_2649
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Amphiphilic polymers show a rich self-assembly behavior in aqueous solutions. In experimental investigations statistical copolymer or block copolymer architectures are usually investigated, because of their ease of synthesis or their structural analogy to surfactants. A copolymer structure that links the two architectures are alternating copolymers, which are easily accessible by polycondensation reactions. Using alternating hydrophilic and hydrophobic building blocks with varying length allows a systematic variation between statistical and multi-block architectures. We synthesized alternating amphiphilic copolymers as polyesters using hydrophobic dicarboxylic acids (C4 – C20) and hydrophilic polyethylene glycol (PEG) units (EG3 – EG1000). Copolymers with long EG units were made accessible with the help of a newly developed esterification process. The solution properties of the amphiphilic copolymers feature a lower critical solution temperature (LCST) behavior in water, which can be systematically varied over a wide range from 3 – 83°C by adjusting the lengths of the Cn- and EGm–units. We find that the transition temperature depends linearly on the hydrophobic unit length Cm and logarithmically on the hydrophilic length EGn. In the one-phase region the PEG copolymer coils are more compact compared to the respective PEG homopolymers due to hydrophobic interactions between the hydrophobic units leading to loop formation. For shorter PEG-units the copolymers form micellar structures consisting only of a few copolymer chains. The micellar cores consist of hydrophobic regions containing only a few dicarboxylic acid units, embedded in a PEG-rich and water-poor matrix. The cores are surrounded by a rather diluted corona of PEG chains. Further decreasing the PEG unit length leads to the formation of highly swollen gels consisting of networks of interconnected micelles. These can self-assemble to form highly ordered liquid crystalline cubic phases. The study demonstrates how the structure of alternating amphiphilic copolymers can be systematically varied to adjust thermal solution properties such as the LCST over a wide range, as well as the self-assembly properties varying between single chain, micelle, gels and highly ordered lyotropic liquid crystals.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a De Mel, Judith U.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vasilyeva, Alexandra
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kruteva, Margarita
|0 P:(DE-Juel1)130777
|b 3
700 1 _ |a Frielinghaus, Henrich
|0 P:(DE-Juel1)130646
|b 4
700 1 _ |a Dulle, Martin
|0 P:(DE-Juel1)172746
|b 5
700 1 _ |a Barnsley, Lester
|0 P:(DE-Juel1)172014
|b 6
700 1 _ |a Förster, Stephan
|0 P:(DE-Juel1)172658
|b 7
700 1 _ |a Schneider, Gerald J.
|b 8
700 1 _ |a Biehl, Ralf
|0 P:(DE-Juel1)130542
|b 9
700 1 _ |a Allgaier, Jürgen
|0 P:(DE-Juel1)130501
|b 10
|e Corresponding author
773 _ _ |a 10.1021/acs.macromol.1c02324
|g p. acs.macromol.1c02324
|0 PERI:(DE-600)1491942-4
|n 5
|p 1552–1565
|t Macromolecules
|v 55
|y 2022
|x 0024-9297
856 4 _ |u https://juser.fz-juelich.de/record/906383/files/AAP-Water_SI_final.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/906383/files/AAP-water_manuscript_final.pdf
|y Published on 2022-02-15. Available in OpenAccess from 2023-02-15.
856 4 _ |u https://juser.fz-juelich.de/record/906383/files/acs.macromol.1c02324.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:906383
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130646
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172746
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130501
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACROMOLECULES : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MACROMOLECULES : 2021
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21