000906419 001__ 906419 000906419 005__ 20220318173144.0 000906419 0247_ $$2doi$$a10.1016/j.neuroimage.2020.117317 000906419 0247_ $$2ISSN$$a1053-8119 000906419 0247_ $$2ISSN$$a1095-9572 000906419 0247_ $$2Handle$$a2128/30826 000906419 0247_ $$2altmetric$$aaltmetric:89253482 000906419 0247_ $$2pmid$$a32882387 000906419 0247_ $$2WOS$$aWOS:000582799600034 000906419 037__ $$aFZJ-2022-01433 000906419 082__ $$a610 000906419 1001_ $$0P:(DE-Juel1)185938$$aFriedrich, Patrick$$b0$$eCorresponding author$$ufzj 000906419 245__ $$aMapping the principal gradient onto the corpus callosum 000906419 260__ $$aOrlando, Fla.$$bAcademic Press$$c2020 000906419 3367_ $$2DRIVER$$aarticle 000906419 3367_ $$2DataCite$$aOutput Types/Journal article 000906419 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646318037_23189 000906419 3367_ $$2BibTeX$$aARTICLE 000906419 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000906419 3367_ $$00$$2EndNote$$aJournal Article 000906419 520__ $$aGradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. For instance, comprehensive mapping of the principal gradient on the largest white matter tract, the corpus callosum, is still missing. Here, we mapped the principal gradient onto the midsection of the corpus callosum using the 7T human connectome project dataset. We further explored how quantitative measures and variability in callosal midsection connectivity relate to the principal gradient values. In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution. 000906419 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000906419 536__ $$0G:(EU-Grant)818521$$aDISCONNECTOME - Brain connections, Stroke, Symptoms Predictions and Brain Repair (818521)$$c818521$$fERC-2018-COG$$x1 000906419 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000906419 7001_ $$00000-0003-0493-0283$$aForkel, Stephanie J.$$b1 000906419 7001_ $$00000-0002-0329-1814$$aThiebaut de Schotten, Michel$$b2 000906419 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2020.117317$$gVol. 223, p. 117317 -$$p117317 -$$tNeuroImage$$v223$$x1053-8119$$y2020 000906419 8564_ $$uhttps://juser.fz-juelich.de/record/906419/files/02_ccGradient_manuscript_R2.pdf$$yOpenAccess 000906419 8564_ $$uhttps://juser.fz-juelich.de/record/906419/files/1-s2.0-S105381192030803X-main.pdf$$yOpenAccess 000906419 909CO $$ooai:juser.fz-juelich.de:906419$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000906419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185938$$aForschungszentrum Jülich$$b0$$kFZJ 000906419 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000906419 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29 000906419 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000906419 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2019$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000906419 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2019$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29 000906419 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger 000906419 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29 000906419 920__ $$lyes 000906419 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 000906419 980__ $$ajournal 000906419 980__ $$aVDB 000906419 980__ $$aUNRESTRICTED 000906419 980__ $$aI:(DE-Juel1)INM-7-20090406 000906419 9801_ $$aFullTexts