000906426 001__ 906426
000906426 005__ 20230123110601.0
000906426 0247_ $$2doi$$a10.1016/j.neuroimage.2022.119014
000906426 0247_ $$2ISSN$$a1053-8119
000906426 0247_ $$2ISSN$$a1095-9572
000906426 0247_ $$2Handle$$a2128/30824
000906426 0247_ $$2altmetric$$aaltmetric:123634656
000906426 0247_ $$2pmid$$apmid:35202813
000906426 0247_ $$2WOS$$aWOS:000766272000003
000906426 037__ $$aFZJ-2022-01438
000906426 082__ $$a610
000906426 1001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b0$$eCorresponding author$$ufzj
000906426 245__ $$aA Novel MRI-Based Quantitative Water Content Atlas of the Human Brain
000906426 260__ $$aOrlando, Fla.$$bAcademic Press$$c2022
000906426 3367_ $$2DRIVER$$aarticle
000906426 3367_ $$2DataCite$$aOutput Types/Journal article
000906426 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646316324_25164
000906426 3367_ $$2BibTeX$$aARTICLE
000906426 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906426 3367_ $$00$$2EndNote$$aJournal Article
000906426 520__ $$aThe measurement of quantitative, tissue-specific MR properties, e.g., water content, longitudinal relaxation time (T1) and effective transverse relaxation time (T2*), using quantitative MRI at a clinical field strength (1.5 T to 3T) is a well-explored topic. However, none of the commonly used standard brain atlases, such as MNI or JHU, provide quantitative information. Within the framework of quantitative MRI of the brain, this work reports on the development of the first quantitative brain atlas for tissue water content at 3T. A methodology to create this quantitative atlas of in vivo brain water content based on healthy volunteers is presented, and preliminary, practical examples of its potential applications are also shown.Established methods for the fast and reliable measurement of the absolute water content were used to achieve high precision and accuracy. Water content and T2* were mapped based on two different methods: an intermediate-TR, two-point method and a long-TR, single-scan method. Twenty healthy subjects (age 25.3 ± 2.5 years) were examined with these quantitative imaging protocols. The images were normalised to MNI stereotactic coordinates, and water content atlases of healthy volunteers were created for each method and compared. Regions-of-interest were generated with the help of a standard MNI template, and water content values averaged across the ROIs were compared to water content values from the literature.Finally, in order to demonstrate the strength of quantitative MRI, water content maps from patients with pathological changes in the brain due to stroke, tumour (glioblastoma) and multiple sclerosis were voxel-wise compared to the healthy brain.The water content atlases were largely independent of the method used to acquire the individual water maps. Global grey matter and white matter water content values between the methods agreed with each other to within 0.5 %. The feasibility of detecting abnormal water content in the brains of patients based on comparison to a healthy brain water content atlas was demonstrated.In summary, the first quantitative water content brain atlas in vivo has been developed and a voxel-wise assessment of pathology-related changes in the brain water content has been performed. These results suggest that qMRI, in combination with a water content atlas, allows for a quantitative interpretation of changes due to disease and could be used for disease monitoring.
000906426 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000906426 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906426 7001_ $$0P:(DE-Juel1)140186$$aAbbas, Zaheer$$b1$$ufzj
000906426 7001_ $$0P:(DE-Juel1)164533$$aRidder, Dominik$$b2$$ufzj
000906426 7001_ $$0P:(DE-Juel1)162442$$aZimmermann, Markus$$b3
000906426 7001_ $$0P:(DE-Juel1)131782$$aOros-Peusquens, Ana-Maria$$b4$$ufzj
000906426 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2022.119014$$gp. 119014 -$$p119014 -$$tNeuroImage$$v252$$x1053-8119$$y2022
000906426 8564_ $$uhttps://juser.fz-juelich.de/record/906426/files/Invoice_OAD0000190778.pdf
000906426 8564_ $$uhttps://juser.fz-juelich.de/record/906426/files/1-s2.0-S1053811922001434-main.pdf$$yOpenAccess
000906426 8564_ $$uhttps://juser.fz-juelich.de/record/906426/files/2022_Shah_NeuroImage_postprint.pdf$$yOpenAccess
000906426 8767_ $$8OAD0000190778$$92022-02-23$$d2022-03-03$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200177895
000906426 909CO $$ooai:juser.fz-juelich.de:906426$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000906426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b0$$kFZJ
000906426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140186$$aForschungszentrum Jülich$$b1$$kFZJ
000906426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164533$$aForschungszentrum Jülich$$b2$$kFZJ
000906426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162442$$aForschungszentrum Jülich$$b3$$kFZJ
000906426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131782$$aForschungszentrum Jülich$$b4$$kFZJ
000906426 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000906426 9141_ $$y2022
000906426 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000906426 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000906426 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000906426 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000906426 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906426 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000906426 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906426 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000906426 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2021$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:29:23Z
000906426 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-27T20:29:23Z
000906426 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-27T20:29:23Z
000906426 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000906426 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2021$$d2022-11-12
000906426 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000906426 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000906426 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000906426 980__ $$ajournal
000906426 980__ $$aVDB
000906426 980__ $$aUNRESTRICTED
000906426 980__ $$aI:(DE-Juel1)INM-4-20090406
000906426 980__ $$aI:(DE-Juel1)INM-11-20170113
000906426 980__ $$aI:(DE-Juel1)VDB1046
000906426 980__ $$aAPC
000906426 9801_ $$aAPC
000906426 9801_ $$aFullTexts