000906543 001__ 906543
000906543 005__ 20230307105031.0
000906543 0247_ $$2doi$$a10.3390/rs14051247
000906543 0247_ $$2WOS$$aWOS:000773836200001
000906543 037__ $$aFZJ-2022-01507
000906543 082__ $$a620
000906543 1001_ $$0P:(DE-Juel1)180929$$aChakhvashvili, Erekle$$b0$$eCorresponding author
000906543 245__ $$aRetrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy
000906543 260__ $$aBasel$$bMDPI$$c2022
000906543 3367_ $$2DRIVER$$aarticle
000906543 3367_ $$2DataCite$$aOutput Types/Journal article
000906543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646733927_10616
000906543 3367_ $$2BibTeX$$aARTICLE
000906543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906543 3367_ $$00$$2EndNote$$aJournal Article
000906543 520__ $$aMapping crop variables at different growth stages is crucial to inform farmers and plant breeders about the crop status. For mapping purposes, inversion of canopy radiative transfer models (RTMs) is a viable alternative to parametric and non-parametric regression models, which often lack transferability in time and space. Due to the physical nature of RTMs, inversion outputs can be delivered in sound physical units that reflect the underlying processes in the canopy. In this study, we explored the capabilities of the coupled leaf–canopy RTM PROSAIL applied to high-spatial resolution (0.015 m) multispectral unmanned aerial vehicle (UAV) data to retrieve the leaf chlorophyll content (LCC), leaf area index (LAI) and canopy chlorophyll content (CCC) of sweet and silage maize throughout one growing season. Two different retrieval methods were tested: (i) applying the RTM inversion scheme to mean reflectance data derived from single breeding plots (mean reflectance approach) and (ii) applying the same inversion scheme to an orthomosaic to separately retrieve the target variables for each pixel of the breeding plots (pixel-based approach). For LCC retrieval, soil and shaded pixels were removed by applying simple vegetation index thresholding. Retrieval of LCC from UAV data yielded promising results compared to ground measurements (sweet maize RMSE = 4.92 μg/cm2, silage maize RMSE = 3.74 μg/cm2) when using the mean reflectance approach. LAI retrieval was more challenging due to the blending of sunlit and shaded pixels present in the UAV data, but worked well at the early developmental stages (sweet maize RMSE = 0.70m2/m2, silage RMSE = 0.61m2/m2 across all dates). CCC retrieval significantly benefited from the pixel-based approach compared to the mean reflectance approach (RMSEs decreased from 45.6 to 33.1 μg/m2). We argue that high-resolution UAV imagery is well suited for LCC retrieval, as shadows and background soil can be precisely removed, leaving only green plant pixels for the analysis. As for retrieving LAI,it proved to be challenging for two distinct varieties of maize that were characterized by contrasting canopy geometry.
000906543 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000906543 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906543 7001_ $$0P:(DE-Juel1)172711$$aSiegmann, Bastian$$b1$$ufzj
000906543 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b2$$ufzj
000906543 7001_ $$00000-0002-6313-2081$$aVerrelst, Jochem$$b3
000906543 7001_ $$0P:(DE-Juel1)186921$$aBendig, Juliane$$b4
000906543 7001_ $$00000-0001-9451-6769$$aKraska, Thorsten$$b5
000906543 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b6
000906543 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs14051247$$gVol. 14, no. 5, p. 1247 -$$n5$$p1247 -$$tRemote sensing$$v14$$x2072-4292$$y2022
000906543 8564_ $$uhttps://juser.fz-juelich.de/record/906543/files/remotesensing-14-01247-v2.pdf$$yRestricted
000906543 8767_ $$8102005$$92022-03-02$$d2022-09-14$$eAPC$$jZahlung erfolgt$$zOABLE
000906543 909CO $$ooai:juser.fz-juelich.de:906543$$popenCost$$pOpenAPC$$pVDB
000906543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180929$$aForschungszentrum Jülich$$b0$$kFZJ
000906543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172711$$aForschungszentrum Jülich$$b1$$kFZJ
000906543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b2$$kFZJ
000906543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186921$$aForschungszentrum Jülich$$b4$$kFZJ
000906543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b6$$kFZJ
000906543 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000906543 9141_ $$y2022
000906543 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-04
000906543 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906543 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906543 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000906543 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000906543 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2021$$d2022-11-09
000906543 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000906543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000906543 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-25T08:07:22Z
000906543 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-25T08:07:22Z
000906543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-25T08:07:22Z
000906543 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000906543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000906543 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000906543 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000906543 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000906543 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS-BASEL : 2021$$d2022-11-09
000906543 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000906543 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906543 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906543 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000906543 920__ $$lyes
000906543 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000906543 980__ $$ajournal
000906543 980__ $$aVDB
000906543 980__ $$aI:(DE-Juel1)IBG-2-20101118
000906543 980__ $$aUNRESTRICTED
000906543 980__ $$aAPC