001     906544
005     20231213202048.0
024 7 _ |a 10.1089/neu.2021.0017
|2 doi
024 7 _ |a 0737-5999
|2 ISSN
024 7 _ |a 0897-7151
|2 ISSN
024 7 _ |a 1557-9042
|2 ISSN
024 7 _ |a 2128/30889
|2 Handle
024 7 _ |a 33906419
|2 pmid
024 7 _ |a WOS:000656636800001
|2 WOS
037 _ _ |a FZJ-2022-01508
082 _ _ |a 610
100 1 _ |a Jia, Xiaoyan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A Longitudinal Study of White Matter Functional Network in Mild Traumatic Brain Injury
260 _ _ |a Larchmont, NY
|c 2021
|b Liebert
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702453274_10687
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Some patients after mild traumatic brain injury (mTBI) experience microstructural damages in the long-distance white matter (WM) connections, which disrupts the functional connectome of large-scale brain networks that support cognitive function. Patterns of WM structural damage following mTBI were well documented using diffusion tensor imaging (DTI). However, the functional organization of WM and its association with gray matter functional networks (GM-FNs) and its DTI metrics remain unknown. The present study adopted resting-state functional magnetic resonance imaging to explore WM functional properties in mTBI patients (108 acute patients, 48 chronic patients, 46 healthy controls [HCs]). Eleven large-scale WM functional networks (WM-FNs) were constructed by the k-means clustering algorithm of voxel-wise WM functional connectivity (FC). Compared with HCs, acute mTBI patients observed enhanced FC between inferior fronto-occipital fasciculus (IFOF) WM-FN and primary sensorimotor WM-FNs, and cortical primary sensorimotor GM-FNs. Further, acute mTBI patients showed increased DTI metrics (mean diffusivity, axial diffusivity, and radial diffusivity) in deep WM-FNs and higher-order cognitive WM-FNs. Moreover, mTBI patients demonstrated full recovery of FC and partial recovery of DTI metrics in the chronic stage. Additionally, enhanced FC between IFOF WM-FN and anterior cerebellar GM-FN was correlated with impaired information processing speed. Our findings provide novel evidence for functional and structural alteration of WM-FNs in mTBI patients. Importantly, the convergent damage of the IFOF network might imply its crucial role in our understanding of the pathophysiology mechanism of mTBI patients.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chang, Xuebin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bai, Lijun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Yulin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dong, Debo
|0 P:(DE-Juel1)190904
|b 4
700 1 _ |a Gan, Shuoqiu
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Shan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Li, Xuan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Yang, Xuefei
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sun, Yinxiang
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Li, Tianhui
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Xiong, Feng
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Niu, Xuan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Yan, Hao
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1089/neu.2021.0017
|g Vol. 38, no. 19, p. 2686 - 2697
|0 PERI:(DE-600)2030888-7
|n 19
|p 2686 - 2697
|t Journal of neurotrauma
|v 38
|y 2021
|x 0737-5999
856 4 _ |u https://juser.fz-juelich.de/record/906544/files/2020.09.25.313338v1.full.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/906544/files/A%20longitudinal%20study%20of%20white%20matter%20functional%20network%20in%20mild%20traumatic%20brain%20injury.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906544
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)190904
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROTRAUM : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21