000906558 001__ 906558
000906558 005__ 20230123110603.0
000906558 0247_ $$2doi$$a10.1103/PhysRevMaterials.6.035001
000906558 0247_ $$2ISSN$$a2475-9953
000906558 0247_ $$2ISSN$$a2476-0455
000906558 0247_ $$2Handle$$a2128/30895
000906558 0247_ $$2altmetric$$aaltmetric:125009609
000906558 0247_ $$2WOS$$aWOS:000768409200004
000906558 037__ $$aFZJ-2022-01518
000906558 082__ $$a530
000906558 1001_ $$0P:(DE-Juel1)130496$$aAkola, Jaakko$$b0$$eCorresponding author
000906558 245__ $$aDensity functional simulations of a conductive bridging random access memory cell: Ag filament formation in amorphous GeS 2
000906558 260__ $$aCollege Park, MD$$bAPS$$c2022
000906558 3367_ $$2DRIVER$$aarticle
000906558 3367_ $$2DataCite$$aOutput Types/Journal article
000906558 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648216632_9871
000906558 3367_ $$2BibTeX$$aARTICLE
000906558 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906558 3367_ $$00$$2EndNote$$aJournal Article
000906558 520__ $$aDensity functional/molecular dynamics simulations have been performed to shed light on the drift of Ag atoms in an amorphous GeS2 solid-state electrolyte between Ag and Pt electrodes in the presence of a finite electric field. The system models a conductive bridging random access memory device, where the electric field induces the formation of conductive filaments across the chalcogenide. Simulations of a 1019-atom structure under an external electrostatic potential of 0.20 eV/Å at 480 and 680 K show significant atomic diffusion within 500 ps. Ag migration and the formation of percolating filaments occur in both cases. Three simulations for a smaller model (472 atoms) confirm the formation of percolating Ag strings. Significantly reduced mobility of Ag cations at 380 K means that Ag migration to the Pt electrode did not occur within 1 ns. The electronic structure analysis of selected snapshots shows that dissolved Ag atoms become markedly cationic, which changes when Ag clusters form at the Pt electrode. The electrolyte does not conduct, despite percolating single-atom Ag wire segments. Sulfur becomes anionic during the migration as a result of Ag-S bonding, and the effect is most pronounced near the active electrode. The formation of conductive filaments requires a percolating network of Ag clusters to grow from the Pt interface, and the weakest link of this network is at the Ag electrode.
000906558 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000906558 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906558 7001_ $$00000-0003-1291-817X$$aKonstantinou, Konstantinos$$b1
000906558 7001_ $$0P:(DE-Juel1)130741$$aJones, R. O.$$b2
000906558 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.6.035001$$gVol. 6, no. 3, p. 035001$$n3$$p035001$$tPhysical review materials$$v6$$x2475-9953$$y2022
000906558 8564_ $$uhttps://juser.fz-juelich.de/record/906558/files/AGSf2.pdf$$yOpenAccess
000906558 8564_ $$uhttps://juser.fz-juelich.de/record/906558/files/PhysRevMaterials.6.035001.pdf$$yOpenAccess
000906558 909CO $$ooai:juser.fz-juelich.de:906558$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130741$$aForschungszentrum Jülich$$b2$$kFZJ
000906558 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000906558 9141_ $$y2022
000906558 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000906558 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000906558 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906558 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000906558 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2021$$d2022-11-25
000906558 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000906558 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000906558 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000906558 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000906558 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000906558 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000906558 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000906558 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000906558 980__ $$ajournal
000906558 980__ $$aVDB
000906558 980__ $$aUNRESTRICTED
000906558 980__ $$aI:(DE-Juel1)IAS-1-20090406
000906558 980__ $$aI:(DE-Juel1)PGI-1-20110106
000906558 9801_ $$aFullTexts