| Home > Publications database > Density functional simulations of a conductive bridging random access memory cell: Ag filament formation in amorphous GeS 2 > print |
| 001 | 906558 | ||
| 005 | 20230123110603.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevMaterials.6.035001 |2 doi |
| 024 | 7 | _ | |a 2475-9953 |2 ISSN |
| 024 | 7 | _ | |a 2476-0455 |2 ISSN |
| 024 | 7 | _ | |a 2128/30895 |2 Handle |
| 024 | 7 | _ | |a altmetric:125009609 |2 altmetric |
| 024 | 7 | _ | |a WOS:000768409200004 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-01518 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Akola, Jaakko |0 P:(DE-Juel1)130496 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Density functional simulations of a conductive bridging random access memory cell: Ag filament formation in amorphous GeS 2 |
| 260 | _ | _ | |a College Park, MD |c 2022 |b APS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648216632_9871 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Density functional/molecular dynamics simulations have been performed to shed light on the drift of Ag atoms in an amorphous GeS2 solid-state electrolyte between Ag and Pt electrodes in the presence of a finite electric field. The system models a conductive bridging random access memory device, where the electric field induces the formation of conductive filaments across the chalcogenide. Simulations of a 1019-atom structure under an external electrostatic potential of 0.20 eV/Å at 480 and 680 K show significant atomic diffusion within 500 ps. Ag migration and the formation of percolating filaments occur in both cases. Three simulations for a smaller model (472 atoms) confirm the formation of percolating Ag strings. Significantly reduced mobility of Ag cations at 380 K means that Ag migration to the Pt electrode did not occur within 1 ns. The electronic structure analysis of selected snapshots shows that dissolved Ag atoms become markedly cationic, which changes when Ag clusters form at the Pt electrode. The electrolyte does not conduct, despite percolating single-atom Ag wire segments. Sulfur becomes anionic during the migration as a result of Ag-S bonding, and the effect is most pronounced near the active electrode. The formation of conductive filaments requires a percolating network of Ag clusters to grow from the Pt interface, and the weakest link of this network is at the Ag electrode. |
| 536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Konstantinou, Konstantinos |0 0000-0003-1291-817X |b 1 |
| 700 | 1 | _ | |a Jones, R. O. |0 P:(DE-Juel1)130741 |b 2 |
| 773 | _ | _ | |a 10.1103/PhysRevMaterials.6.035001 |g Vol. 6, no. 3, p. 035001 |0 PERI:(DE-600)2898355-5 |n 3 |p 035001 |t Physical review materials |v 6 |y 2022 |x 2475-9953 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/906558/files/AGSf2.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/906558/files/PhysRevMaterials.6.035001.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:906558 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130741 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV MATER : 2021 |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-25 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-25 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|