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The main question of this talk

e What happens if we execute the quantum approximate optimisation
algorithm (QAOA) on two and three-qubit virtual quantum information
processors or chips?

® Virtual in this context means that we model the processor by means of
a circuit Hamiltonian model.
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The QAOA a brief introduction:

® The QAOA is a hybrid variational algorithm which was proposed by
Farhi, Goldstone and Gutmann (FGG).

® QAOA aims to maximise or minimise a cost function which is given by
the expectation value (v, 8|Hc|v, 3) of a cost Hamiltonian Hc.

e The parameterised trail state |y, 3) = ngl e~ BoHiu g=ipHc S
obtained by implementing a circuit on a V qubit gate-based quantum
computer.

* In total we have 2P parameters v = (Vp=1, ..., Yp=p) and

/3 = (ﬁp:h ceey ﬁp:P)-
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The QAOA a brief introduction:

® For our simulations we use the Ising Hamiltonian
Hc =% hio? + Z,-<j Jijoi @ UJ-Z as our cost Hamiltonian.

e The second Hamiltonian Hy, in the generator is defined as

® In this talk, / and j are elements of the set {0, ..., N — 1}.

® Once we have fixed the cost Hamiltonian, we need problems (in terms
of parameters h; and J; ;) to solve with the QAOA.

JOLICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 17th January 2022 slide 3 'J s ULICH

rschungszentrum




Find the ground state of the Ising Hamiltonian
under the following constrains

® (1) The problems have to fit to the hardware.

® (2) The two-qubit gates should be involved J; ; # 0.

® (3) The problems should have a unique ground state (GS).

® (4) The pen and paper model should find the GS (GS prob. > 0.95).

® (5) The run times have to be reasonable, which means we can do
about 50 cost function evaluations.

® (6) We need problems for different circuit depths, i.e. P € {2,3,4,5}.

e (7) All previous points should be satisfied for a fixed set of optimisation
settings.
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How do we model the virtual chips?

® We use a lumped-element model to describe the different
components of the system and the connection between them.

"With permission of Jonas Bylander from Chalmers University of Technology
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The lumped-element model

¢ L
v

® We assume that all two-terminal elements, i.e. capacitors, inductors
and Josephson junctions, can be described by a unique relation.

® This constitutive relation connects the current / flowing through the
element and the voltage difference V at its two ports.

® Kirchhoff’s laws provide relations which connect the different
elements.

® Since we use the Hamiltonian formalism to quantise the circuit, we
prefer to work with the flux variable ¢ and its conjugate charge
variable 7, instead of the voltage V' and the current /.
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The fixed-frequency transmon

Feix. = Ec (7 — ng(t))> — E; cos (@)
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The flux-tunable transmon

C_— E; X ® X Ej

’:ITun. = ECﬁ2 - EJ,I Cos (95) - EJ,r Cos (95 - So(t))
@(t) = cDext.(t)/ébo
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The LC resonator
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The complete model Hamiltonian

Fireuit = I:IFix.,): + FlTun.,): + ’:IRes.,Z + Vint.

. 2
Heiy.,x = E Ec; (hi - "g,i(f)) — Ej; cos (i),

il
~ N 2 R R
Hrun.,x = E Eg; ("j - "g,j(t)) — Ej ; cos (vj) — Ej, jcos (<Pj - Wj(t)) )
jeJ
I:’Res.,): = E Wfél EPS
keK
Vint. = E Gfoi), (ﬁi ® fl,-/) + E Gj.(}i) (ﬁj ® ﬁi)
(i,i")erx1’ G,nesxt
2 a 3 A
+ E GJ(’J), (nj ® nj/) + E 6> (ak + aT) ® i
G.J')eIxJ’ (k,)EKXI
+ 6 (s +af) @n+ E 6, (a+af) ® (3w +,)
(k. j)EKXJ (k,k"YEK X K’
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The two-qubit system
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The two-qubit device parameters in GHz

wl /on wio/27r a2 Ec/2m Ej/2m Ej . /2m @oi/2m

i

0 n/a 4200 —0.320 1.068 2.355 7.064 O
1 n/a 5.200 —0.295 1.037 3.612 10.837 O
2 45.000 n/a n/a n/a n/a n/a n/a
G072/27T G172/27T

0.300 0.300

® Note that throughout this talk all flux offsets (g ; are given in units of
the flux quantum ¢y.
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The three-qubit system
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The three-qubit device parameters in GHz

i wR/2n wR/2r «;/2r  Ec/2rn Ejy/2m Ej /271 if27
0] n/a 4200 —0.320 1.068 2.355 7.064 O
1 n/a 5.200 —0.295 1.037 3.612 10.837 0
2 n/a 5700 —0.285 1.017 4.374 13.122 0
3 45.000 n/a n/a n/a n/a n/a n/a
4 45.000 n/a n/a n/a n/a n/a n/a
G073/27T G173/27T G174/27T G274/27T
0.300 0.300 0.300 0.300
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The control pulses

® Two-qubit CZ gates are implemented with unimodal flux control pulses

a0 =5 (et (S5 ) —et (52))-

® Note that throughout this talk all pulse amplitudes § are given in units
of the flux quantum ¢g.

® Single-qubit Rx(7/2) rotations are implemented with charge control
pulses

2
exp ((2?072-“’)2) — exp (;;dz)
n’/./(t) =4 T2
1 —exp (&“’2)

® The DRAG component is not shown here (the corresponding pulse
parameter is refered to as 3).
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The control pulses

0.5 0.005
0.004

04 0003
0.002

e 0.3 0.001
s‘ﬂ 2 -0.001
-0.002

0.1 -0.003
-0.004

0 20 40 60 80 100 0005 10 20 30 40 50
t[ns] t[ns]

® Flux control pulse (left panel) and charge control pulse (right panel).
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QAOA program structure

_ Cost
v=0.5) o Circuit(v) Simulation of QC (PFA) =)

Optimisation (NLopt library)

® PFA = Product Formula Algorithm (solves the TDSE for I%ircuit)
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The classical optimisation algorithms

® For our simulations we use the NLopt library which contains more then
ten gradient-free optimisation algorithms.

BOBYQA = Bound Optimisation By Quadratic Approximation.

COBYLA = Constrained Optimisation By Linear Approximations.

Nelder-Mead = Simplex Method (considered good for noisy problems).

Bound-constrained = Predecessor of BOBYQA.
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Quality assessment of two-qubit chip

The Frobenius square norm .

The diamond norm g,
® The average infidelity u,,,

A leakage measure fieak

Pulse HE2 Mo JUF a0 Hieak

RX(7/2)o 0.0002 0.0084 0.0004 0.0004
RX(7/2);  0.0003 0.0108 0.0004 0.0004
CZ(1,71 0.0008 0.0193 0.0014 0.0012
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Results for the two-qubit chip

| P2—o— p3-m Pt v P5 o

(a) BOBYQA (b) COBYLA
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Initialisation of v and 3 with a linear annealing
schedule

® Note that the initial success probability is quite high and grows with P.

® FGG's paper contains a section with the title: relation to the quantum
adiabatic algorithm.

® We use the line of reasoning presented in this section to initialise the
and /3 parameters with a linear annealing schedule.

® We expect to see that the initial success probability grows with the
discrete variable P.
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Quality assessment of the three-qubit chip

The diamond norm pie

The average infidelity pr,,
A leakage measure fieak

The Frobenius square norm up2.

Pulse = Uo FiFag Hieak
RX(7/2)0 0.010 0.015 0.003 0.002
RX(7/2)1 0.006 0.013 0.002 0.001
RX(7/2)2 0.007 0.014 0.002 0.001
5, 0.008 0.049 0.010 0.010
c7, 0.001 0.014 0.002 0.002
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Results for the three-qubit chip

(a) BOBYQA
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CZ gate flux control pulse for four different static
biases Ad

05 - 3
AB2T=) —e—  AY2m=107 —v— 10 Ad2n=) —e— * AB2m=107 ——
AS2m=10" —=—  AS2m=10" —+— Ad2=10" —=—  Ad2n=10" —+—
04
10*
Q03 S
o2 k=S
10°
01
0 107 I——
20 %0 0 80 100 30 40 50 60 70 80 90 100
t[ns] t[ns]
5+ AS t tT,
o(t) = ——— (erf () —erf ( .
2 \@U \ﬁa
‘ 'l JLICH
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Twenty CNOT repetitions with the two-qubit chip for
different static biases of the pulse amplitude ¢

Infidelity —@—
Leakage —&—

(a) Without static bias (b) With static bias A3/2 7=10°
! T L ———
E 08 E g 08 f
S 06 | E S 06 |
=
5 04 | E 5 04
o2} ] 2ozl
5 02 5 0.3
4
10 20 30 40 50 60 10 20 30 40 50 60
Number of Gates Number of Gates
(c) With static bias A3/2 7=10"> (d) With static bias A&/2 n=10"*
" 1 T T T T T ” 1 T T T T T
208 F E 208
= b=}
S 06 | E S 06
= =
= 04 | E = 04
202 | 02
o &3] '0
10 20 30 40 50 60 10 20 30 40 50 60
Number of Gates Number of Gates

® The initial CZg ; gate infidelity increases roughly from 0.001 without
bias to 0.01 with bias A§ /27 = 1074
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Results for the two-qubit chip with static bias

A6 /2T = 107"

I P=2 —o— P=3 —=—
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Results for the two-qubit chip with static bias
A6 /2T = 107"

® Note that the initial success probability for P = 5 is now the lowest
while the one for P = 2 is the highest.

® The carefully crafted parameter initialisation has lost its value.

® However, the overall performance for the given Ising problems and the
optimisation settings is still quite good.
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Results for the three-qubit chip with static bias

A6 /2T = 107"
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Final remarks regarding the results

The results are only valid for the virtual chips we discussed and the
circuit model!

® We performed simulations (data not shown) with other models,
i.e. simpler models and/or different device architectures.

The results can vary a lot for the same Ising problems and the same
optimisation settings.

This makes it very difficult to judge the QAOA.
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Summary and conclusions

® We find that for the given problems and simulation settings the QAOA
yields reasonably good results.

® We saw an example where QAOA was able to compensate for
low-quality two-qubit gates.

® We deal with highly parameterised models which are difficult to
understand.

® Therefore, we should not compare different devices by means of this
algorithm.
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Outlook

Simulate different types of variational problems, i.e. different problem
Hamiltonians (the software can do this already).

Repeat the simulations with different types of circuit architectures and
larger chips (these are already calibrated).

Run the problems on the devices in the Jilich laboratory.

Test different noise spectra for different devices.

JOLICH
SUPEWCDMPUT\NG

Member of the Helmholtz Association 17th January 2022 slide 31 9 J U LICH

Forschungszentrum




The end

® Many thanks to the QIP group and Daniel Zeuch for useful comments
regarding the talk!

® Thank you for your attention!
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The problem at hand

e We would like to solve the TDSE numerically

.0 ;
iog [0(0) = H(t) [v(t)).

® The well known, formal solution to this problem reads
n t+7 , ,
U = Texp(—i/ Fi(e ) dt).
t

® If we assume that 7 < 1 and I:I(t) is piecewise constant between two
time steps t and t + 7, we have

[(t + 7)) = exp(=iTH(t +7/2)) [4)(2)) -
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Results for the three-qubit chip
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Results for the two-qubit chip
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Results for the two-qubit chip with static bias

A6 /2T = 107"
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Results for the three-qubit chip with static bias
A6 /2T = 107"
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How to determine the action of exp(—iTH(t + 7/2))
efficiently with respect to |¢(t)) ?

® Make use of the Lie-Trotter-Suzuki product formula

eo(2) - . (Tewi19)

i€l i€l

and decompose A= YoieT f(,- into Hermitian operators R,-.

® For the first-order approximation we have
Uy = Hexp(—in(,-).
ieT
® One can formally show that the first-order local error is given by
HZ/AI — LA{1H§ arl.
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How to determine the action of exp(—iTH(t + 7/2))
efficiently with respect to |¢(t)) ?

® For the second-order approximation we have
1 X o [lT1-1 .
Z/?2 — H e—iTK,‘/2 e—iTKo H e—iTK,-/Z )
i=|T|-1 i=1

® One can show that the second-order local error is given by
U — || < co7>.
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A simple model Hamiltonian in the harmonic bias

H= HTransmcn,Z + HResonator,Z + Vlnteraction

Q
: § : sry o) e e
Hrransmon, > = wic)(t)bl.T b + - b;r b; (bj’ b — /) ,

2
iel
’ § : Rats
HResonator,): = wj ajf 4j,
j€d
. 0 P N N
Vinteraction = E g9 () (b,- + b,.*) ® (b,-, n bIT,)
(i,i"yelx 1’
(1) (5. 4 4t 5 5t
s e e ()
G.j")edx s’
2 R R .
+ E 0] (3+3) @ (bs+5})
U,iyeIxI
JULICH
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The adiabatic algorithm makes use of the fact that

A

H(t) = (1 — s(t))Fstart + s(t) Feinal

I:IStart = Z _0',)'<
i
Hinal = Z hio} + Z Jijoi @ of
i i<j
e If initialise a system H(t) in its ground state and vary s(t) € [0, 1] slow

enough, the system will remain in its instantaneous ground state.

® Note that |+) is the ground state of Hstart.
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Trotterisation of the time-evolution operator 2/( T)

P i ~
Z/A[( T) ~ H e_i(l—S(tp))HStartTe—iS(tp)HFinalT

p=0
P S A~
Z/A[( T) ~ H e~ 1PpHstart o= ip Hrinal
p=0

® Suchthat 8, = (1 — s(tp))7 and v, = s(tp)7.
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Recasting the operator Z/A{( T)— (Aj(vp, Bp)

® The previous steps enable us to make use of the diagonal structure of
Hsiart and Hiinal (in their respective bias).

® Rearranging the exponential operators yields

e_ iﬁp I:IStart e_ i’Yp I:IFinaI

U(Wpa 5p)
e*i'Yp/:/Final — H e(27ph) iof /2 H e(’pr,J Io’z®o'
i<j
*iﬁpf:’start — H e(f2,6’p)fia.x/2

7p7/8p H elﬁpo' H e —ivphio? H e —ivpdijof ®o’

i<j
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Implementation of |v, ) = HpP:1 e~ heH g~ ipHe |+>N

* First move the system into the state [+)".

) ne (0]
‘Zl> 216{0,1}

lzn—2) zy_2 € {0,1}
lzn-1) zy—1 € {0,1}

® Since }_; hiof and }_,; Jj jof ® of commute, we can implement the
corresponding exponential operators individually one after another.
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JIJO'I' ®0J

Step O: implement [];; e~ "

oiQo%

® Asingle term in the product [];_; e i J can be implement as:
1<J

ES A ze{o1}

1Z) (H] Rx(2vpJij) H z €{0,1}

® Note that one can interchange the qubits without changing the results.
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Step 1: implement [1; e "7»hio7

|20) Rz(2vpho) 7 € {0,1}
|21> RZ(2’7ph1) z] € {0, 1}
|ZN—2> - RZ(2'thN—2) ZN—2 € {0, 1}
lzv—1) —— Rz(2vphn-1) zy-1 € {0,1}
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Step 2: implement e~/ — [1; ¢

20) — Rx(25,) o< {0.1)
|z1) —— Rx(—26p) 71 €{0,1}
|zv—2) —— Rx(—26p) zn_p € {0,1}
lzn-1) — Rx(=28,) A~ zv-1e {01}

® Once we have the circuit, we need problems to solve with the QAOA.
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Various error measures for the target operator U

e If M denotes the projected state vector operator, we can define
V = UMT such that the error measures can be expressed as
pr2 = | = ul|l,
(V)3T (MRt
Hiag = D(D+1)
1 N A A N
po = sup (I(V1 ) Wyl (Ve 1) = jo)wl )
[Y)EHD

Tr.(M Mt
fleak = 1 — ((D)> )

o where u = +/Te(V1)/Te(V1), D = dim(Hp) and Hp C CP.
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