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The main ques�on of this talk

• What happens if we execute the quantum approximate op�misa�on
algorithm (QAOA) on two and three-qubit virtual quantum informa�on
processors or chips?

• Virtual in this context means that we model the processor by means of
a circuit Hamiltonian model.
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The QAOA a brief introduc�on:

• The QAOA is a hybrid varia�onal algorithm which was proposed by
Farhi, Goldstone and Gutmann (FGG).

• QAOA aims to maximise or minimise a cost func�on which is given by
the expecta�on value 〈γ, β|HC |γ, β〉 of a cost Hamiltonian HC .

• The parameterised trail state |γ, β〉 =
∏P

p=1 e−iβpĤM e−iγpĤC |+〉N is
obtained by implemen�ng a circuit on a N qubit gate-based quantum
computer.

• In total we have 2P parameters γ = (γp=1, ..., γp=P) and
β = (βp=1, ..., βp=P).

Member of the Helmholtz Associa�on 17th January 2022 Slide 2



The QAOA a brief introduc�on:

• For our simula�ons we use the Ising Hamiltonian
ĤC =

∑
i hiσ

z
i +

∑
i<j Ji ,jσ

z
i ⊗ σz

j as our cost Hamiltonian.

• The second Hamiltonian ĤM in the generator is defined as
ĤM =

∑
i −σx

i .

• In this talk, i and j are elements of the set {0, ...,N − 1}.

• Once we have fixed the cost Hamiltonian, we need problems (in terms
of parameters hi and Ji ,j ) to solve with the QAOA.
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Find the ground state of the Ising Hamiltonian
under the following constrains

• (1) The problems have to fit to the hardware.
• (2) The two-qubit gates should be involved Ji ,j 6= 0.
• (3) The problems should have a unique ground state (GS).
• (4) The pen and paper model should find the GS (GS prob. > 0.95).
• (5) The run �mes have to be reasonable, which means we can do
about 50 cost func�on evalua�ons.
• (6) We need problems for different circuit depths, i.e. P ∈ {2, 3, 4, 5}.
• (7) All previous points should be sa�sfied for a fixed set of op�misa�on
se�ngs.
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How do we model the virtual chips?

Qubit 1
Qubit 2 Qubit 5

Qubit 4Qubit 3

Input/Output for control pulses

Input/Output for control pulses 1

• We use a lumped-element model to describe the different
components of the system and the connec�on between them.

1With permission of Jonas Bylander from Chalmers University of Technology
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The lumped-element model
C

V

I L

V

I

• We assume that all two-terminal elements, i.e. capacitors, inductors
and Josephson junc�ons, can be described by a unique rela�on.
• This cons�tu�ve rela�on connects the current I flowing through the
element and the voltage difference V at its two ports.
• Kirchhoff’s laws provide rela�ons which connect the different
elements.
• Since we use the Hamiltonian formalism to quan�se the circuit, we
prefer to work with the flux variable ϕ̂ and its conjugate charge
variable n̂, instead of the voltage V and the current I .
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The fixed-frequency transmon

−
+Vg (t)

Cg
C EJ

ĤFix. = EC (n̂ − ng (t))2 − EJ cos (ϕ̂)
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The flux-tunable transmon

C EJ,l EJ,r⊗
Φext.(t)

ĤTun. = EC n̂2 − EJ,l cos (ϕ̂)− EJ,r cos (ϕ̂− ϕ(t))
ϕ(t) = Φext.(t)/φ0
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The LC resonator

C L

ĤRes. = ωR â†â
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The complete model Hamiltonian

ĤCircuit = ĤFix.,Σ + ĤTun.,Σ + ĤRes.,Σ + V̂Int.

ĤFix.,Σ =
∑

i∈I

ECi

(
n̂i − ng,i (t)

)2
− EJi cos (ϕ̂i ) ,

ĤTun.,Σ =
∑
j∈J

ECj

(
n̂j − ng,j (t)

)2
− EJl,j cos

(
ϕ̂j
)
− EJr,j cos

(
ϕ̂j − ϕj (t)

)
,

ĤRes.,Σ =
∑
k∈K

ω
R
k â†k âk ,

V̂Int. =
∑

(i,i′)∈I×I′

G(0)
i,i′

(
n̂i ⊗ n̂i′

)
+
∑

(j,i)∈J×I

G(1)
j,i

(
n̂j ⊗ n̂i

)
+
∑

(j,j′)∈J×J′

G(2)
j,j′

(
n̂j ⊗ n̂j′

)
+
∑

(k,i)∈K×I

G(3)
k,i

(
âk + â†k

)
⊗ n̂i

+
∑

(k,j)∈K×J

G(4)
k,j

(
âk + â†k

)
⊗ n̂j +

∑
(k,k′)∈K×K′

G(5)
k,k′

(
âk + â†k

)
⊗
(

âk′ + â†
k′

)
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The two-qubit system

ωQ
0

ωR
2

ωQ
1

G 0,2

G 1,2
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The two-qubit device parameters in GHz

i ωR
i /2π ωQ

i /2π αi/2π ECi/2π EJi ,l/2π EJi ,r/2π ϕ0,i/2π
0 n/a 4.200 −0.320 1.068 2.355 7.064 0
1 n/a 5.200 −0.295 1.037 3.612 10.837 0
2 45.000 n/a n/a n/a n/a n/a n/a

G0,2/2π G1,2/2π
0.300 0.300

• Note that throughout this talk all flux offsets ϕ0,i are given in units of
the flux quantum φ0.
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The three-qubit system

ωQ
0

ωR
3

ωQ
1

ωR
4

ωQ
2

G 0,3

G 1,3

G
1,4

G
2,4
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The three-qubit device parameters in GHz

i ωR
i /2π ωQ

i /2π αi/2π ECi/2π EJi ,l/2π EJi ,r/2π ϕi/2π
0 n/a 4.200 −0.320 1.068 2.355 7.064 0
1 n/a 5.200 −0.295 1.037 3.612 10.837 0
2 n/a 5.700 −0.285 1.017 4.374 13.122 0
3 45.000 n/a n/a n/a n/a n/a n/a
4 45.000 n/a n/a n/a n/a n/a n/a

G0,3/2π G1,3/2π G1,4/2π G2,4/2π
0.300 0.300 0.300 0.300
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The control pulses
• Two-qubit CZ gates are implemented with unimodal flux control pulses

ϕj(t) = δ

2

(
erf
( t√

2σ

)
− erf

( tTp√
2σ

))
.

• Note that throughout this talk all pulse amplitudes δ are given in units
of the flux quantum φ0.
• Single-qubit RX (π/2) rota�ons are implemented with charge control
pulses

ni/j(t) = a
exp

(
(2t−Td )2

8σ2

)
− exp

(
T 2

d
8σ2

)
1− exp

(
T 2

d
8σ2

) cos (ω̃t − γ) .

• The DRAG component is not shown here (the corresponding pulse
parameter is refered to as β).
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The control pulses
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• Flux control pulse (le� panel) and charge control pulse (right panel).
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QAOA program structure

Circuit(v) Simula�on of QC (PFA)

Op�misa�on (NLopt library)

v = (γ, β) Cost(v)

v′

• PFA = Product Formula Algorithm (solves the TDSE for ĤCircuit)
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The classical op�misa�on algorithms

• For our simula�ons we use the NLopt library which contains more then
ten gradient-free op�misa�on algorithms.

• BOBYQA = Bound Op�misa�on By Quadra�c Approxima�on.

• COBYLA = Constrained Op�misa�on By Linear Approxima�ons.

• Nelder-Mead = Simplex Method (considered good for noisy problems).

• Bound-constrained = Predecessor of BOBYQA.
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Quality assessment of two-qubit chip

• The Frobenius square norm µF 2 .
• The diamond norm µ�

• The average infidelity µIFavg
• A leakage measure µLeak

Pulse µF 2 µ� µIFavg µLeak
RX(π/2)0 0.0002 0.0084 0.0004 0.0004
RX(π/2)1 0.0003 0.0108 0.0004 0.0004
CZ1

0,1 0.0008 0.0193 0.0014 0.0012

Member of the Helmholtz Associa�on 17th January 2022 Slide 19



Results for the two-qubit chip
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Ini�alisa�on of γ and β with a linear annealing
schedule

• Note that the ini�al success probability is quite high and grows with P .

• FGG’s paper contains a sec�on with the �tle: rela�on to the quantum
adiaba�c algorithm.

• We use the line of reasoning presented in this sec�on to ini�alise the γ
and β parameters with a linear annealing schedule.

• We expect to see that the ini�al success probability grows with the
discrete variable P .
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Quality assessment of the three-qubit chip

• The Frobenius square norm µF 2 .
• The diamond norm µ�

• The average infidelity µIFavg
• A leakage measure µLeak

Pulse µF 2 µ� µIFavg µLeak
RX(π/2)0 0.010 0.015 0.003 0.002
RX(π/2)1 0.006 0.013 0.002 0.001
RX(π/2)2 0.007 0.014 0.002 0.001
CZ1

0,1 0.008 0.049 0.010 0.010
CZ2

1,2 0.001 0.014 0.002 0.002
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Results for the three-qubit chip
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CZ gate flux control pulse for four different sta�c
biases ∆δ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  20  40  60  80  100  120

ϕ
(t

)/
2
 π

t[ns]

∆δ/2π=0

∆δ/2π=10
-4

∆δ/2π=10
-5

∆δ/2π=10
-6

  10
-7

  10
-6

  10
-5

  10
-4

  10
-3

 20  30  40  50  60  70  80  90  100

|ϕ
(t

)-
δ
|/2

 π

t[ns]

∆δ/2π=0
∆δ/2π=10

-4
∆δ/2π=10

-5

∆δ/2π=10
-6

ϕ(t) = δ + ∆δ
2

(
erf
( t√

2σ

)
− erf

( tTp√
2σ

))
.

Member of the Helmholtz Associa�on 17th January 2022 Slide 24



Twenty CNOT repe��ons with the two-qubit chip for
different sta�c biases of the pulse amplitude δ
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• The ini�al CZ0,1 gate infidelity increases roughly from 0.001 without
bias to 0.01 with bias ∆δ/2π = 10−4.
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Results for the two-qubit chip with sta�c bias
∆δ/2π = 10−4
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Results for the two-qubit chip with sta�c bias
∆δ/2π = 10−4

• Note that the ini�al success probability for P = 5 is now the lowest
while the one for P = 2 is the highest.

• The carefully cra�ed parameter ini�alisa�on has lost its value.

• However, the overall performance for the given Ising problems and the
op�misa�on se�ngs is s�ll quite good.
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Results for the three-qubit chip with sta�c bias
∆δ/2π = 10−4
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Final remarks regarding the results

• The results are only valid for the virtual chips we discussed and the
circuit model!

• We performed simula�ons (data not shown) with other models,
i.e. simpler models and/or different device architectures.

• The results can vary a lot for the same Ising problems and the same
op�misa�on se�ngs.

• This makes it very difficult to judge the QAOA.
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Summary and conclusions

• We find that for the given problems and simula�on se�ngs the QAOA
yields reasonably good results.

• We saw an example where QAOA was able to compensate for
low-quality two-qubit gates.

• We deal with highly parameterised models which are difficult to
understand.

• Therefore, we should not compare different devices by means of this
algorithm.
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Outlook

• Simulate different types of varia�onal problems, i.e. different problem
Hamiltonians (the so�ware can do this already).

• Repeat the simula�ons with different types of circuit architectures and
larger chips (these are already calibrated).

• Run the problems on the devices in the Jülich laboratory.

• Test different noise spectra for different devices.
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The end

• Many thanks to the QIP group and Daniel Zeuch for useful comments
regarding the talk!
• Thank you for your a�en�on!
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The problem at hand

• We would like to solve the TDSE numerically

i ∂
∂t |ψ(t)〉 = Ĥ(t) |ψ(t)〉 .

• The well known, formal solu�on to this problem reads

Û = T exp(−i
∫ t+τ

t
Ĥ(t ′)dt ′).

• If we assume that τ � 1 and Ĥ(t) is piecewise constant between two
�me steps t and t + τ , we have

|ψ(t + τ)〉 = exp(−iτ Ĥ(t + τ/2)) |ψ(t)〉 .
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Results for the three-qubit chip
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Results for the two-qubit chip
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Results for the two-qubit chip with sta�c bias
∆δ/2π = 10−4
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Results for the three-qubit chip with sta�c bias
∆δ/2π = 10−4
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How to determine the ac�on of exp(−iτ Ĥ(t + τ/2))
efficiently with respect to |ψ(t)〉 ?
• Make use of the Lie-Tro�er-Suzuki product formula

exp
(∑

i∈I
Âi

)
= lim

n→∞

(∏
i∈I

exp
(
Âi/n

))n

,

and decompose Ĥ =
∑

i∈I K̂i into Hermi�an operators K̂i .

• For the first-order approxima�on we have
Û1 :=

∏
i∈I

exp(−iτ K̂i ).

• One can formally show that the first-order local error is given by
‖Û − Û1‖≤ c1τ

2.
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How to determine the ac�on of exp(−iτ Ĥ(t + τ/2))
efficiently with respect to |ψ(t)〉 ?

• For the second-order approxima�on we have

Û2 :=

 1∏
i=|I|−1

e−iτ K̂i/2

 e−iτ K̂0

|I|−1∏
i=1

e−iτ K̂i/2

 .
• One can show that the second-order local error is given by

‖Û − Û2‖≤ c2τ
3.
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A simple model Hamiltonian in the harmonic bias

Ĥ = ĤTransmon,Σ + ĤResonator,Σ + V̂Interac�on

ĤTransmon,Σ =
∑

i∈I

ω
Q
i (t)b̂†i b̂i +

αQ
i (t)

2
b̂†i b̂i
(

b̂†i b̂i − Î
)
,

ĤResonator,Σ =
∑
j∈J

ω
R
j â†j âj ,

V̂Interac�on =
∑

(i,i′)∈I×I′

g(0)
i,i′

(t)
(

b̂i + b̂†i
)
⊗
(

b̂i′ + b̂†
i′

)
+
∑

(j,j′)∈J×J′

g(1)
j,j′

(
âj + â†j

)
⊗
(

âj′ + â†
j′

)
+
∑

(j,i)∈J×I

g(2)
j,i′

(t)
(

âj + â†j
)
⊗
(

b̂i′ + b̂†
i′

)
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The adiaba�c algorithm makes use of the fact that

Ĥ(t) = (1− s(t))ĤStart + s(t)ĤFinal

ĤStart =
∑

i
−σx

i

ĤFinal =
∑

i
hiσ

z
i +

∑
i<j

Ji ,jσ
z
i ⊗ σz

j

• If ini�alise a system Ĥ(t) in its ground state and vary s(t) ∈ [0, 1] slow
enough, the system will remain in its instantaneous ground state.

• Note that |+〉 is the ground state of ĤStart.
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Tro�erisa�on of the �me-evolu�on operator Û(T )

Û(T ) = T e−i
∫ T

0 Ĥ(t)dt

Û(T ) '
P∏

p=0
e−iĤ(tp)τ

Û(T ) '
P∏

p=0
e−i(1−s(tp))ĤStartτe−is(tp)ĤFinalτ

Û(T ) '
P∏

p=0
e−iβpĤStarte−iγpĤFinal

• Such that βp = (1− s(tp))τ and γp = s(tp)τ .
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Recas�ng the operator Û(T )→ Û(γp, βp)
• The previous steps enable us to make use of the diagonal structure of

ĤStart and ĤFinal (in their respec�ve bias).

• Rearranging the exponen�al operators yields

Û(γp, βp) = e−iβpĤStarte−iγpĤFinal ,

e−iγpĤFinal =
∏

i
e(2γphi )−iσz

i /2∏
i<j

e(γpJi,j )−iσz
i ⊗σ

z
j ,

e−iβpĤStart =
∏

i
e(−2βp)−iσx

i /2,

Û(γp, βp) =
∏

i
eiβpσx

i
∏

i
e−iγphiσz

i
∏
i<j

e−iγpJi,jσz
i ⊗σ

z
j .
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Implementa�on of |γ, β〉 = ∏P
p=1 e−iβpĤMe−iγpĤC |+〉N

• First move the system into the state |+〉N .

|z0〉 H z0 ∈ {0, 1}

|z1〉 H z1 ∈ {0, 1}

...
...

...

|zN−2〉 H zN−2 ∈ {0, 1}

|zN−1〉 H zN−1 ∈ {0, 1}

• Since
∑

i hiσ
z
i and

∑
i<j Ji ,jσ

z
i ⊗ σz

j commute, we can implement the
corresponding exponen�al operators individually one a�er another.
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Step 0: implement ∏i<j e−iγpJi ,jσ
z
i ⊗σz

j

• A single term in the product
∏

i<j e−iγpJi,jσz
i ⊗σ

z
j can be implement as:

|zi〉 • • zi ∈ {0, 1}
...

...
|zj〉 H • RX (2γPJi ,j) • H zj ∈ {0, 1}

• Note that one can interchange the qubits without changing the results.
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Step 1: implement ∏i e−iγphiσ
z
i

|z0〉 RZ (2γph0) z0 ∈ {0, 1}

|z1〉 RZ (2γph1) z1 ∈ {0, 1}

...
...

...

|zN−2〉 RZ (2γphN−2) zN−2 ∈ {0, 1}

|zN−1〉 RZ (2γphN−1) zN−1 ∈ {0, 1}
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Step 2: implement e−iβpĤM = ∏
i e iβpσ

x
i

|z0〉 RX (−2βp) z0 ∈ {0, 1}

|z1〉 RX (−2βp) z1 ∈ {0, 1}

...
...

...

|zN−2〉 RX (−2βp) zN−2 ∈ {0, 1}

|zN−1〉 RX (−2βp) zN−1 ∈ {0, 1}

• Once we have the circuit, we need problems to solve with the QAOA.
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Various error measures for the target operator Û
• If M̂ denotes the projected state vector operator, we can define

V̂ = ÛM̂† such that the error measures can be expressed as

µF 2 = ‖M̂ − uÛ‖F ,

µFAvg = ‖Tr.(V̂ )‖2
1+Tr.(M̂M̂†)

D (D + 1) ,

µ� = 1
2 sup
|ψ〉∈HD

(
‖
(
V̂ † ⊗ Î

)
|ψ〉〈ψ|

(
V̂ † ⊗ Î

)†
− |ψ〉〈ψ| ‖Tr.

)
,

µLeak = 1−
(
Tr.(M̂M̂†)

D

)
,

• where u = ±
√
Tr.(V̂ †)/Tr.(V̂ †)∗, D = dim(HD) andHD ⊆ CD .
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