

REAL-TIME SIMULATIONS OF THE QUANTUM APPROXIMATE OPTIMISATION ALGORITHM

With a circuit Hamiltonian model

17th January 2022 | Hannes Lagemann | Institute for Advanced Simulation

The main question of this talk

- What happens if we execute the quantum approximate optimisation algorithm (QAOA) on two and three-qubit virtual quantum information processors or chips?
- Virtual in this context means that we model the processor by means of a circuit Hamiltonian model.

The QAOA a brief introduction:

- The QAOA is a hybrid variational algorithm which was proposed by Farhi, Goldstone and Gutmann (FGG).
- QAOA aims to maximise or minimise a cost function which is given by the expectation value $\langle \gamma, \beta | H_C | \gamma, \beta \rangle$ of a cost Hamiltonian H_C .
- The parameterised trail state $|\gamma,\beta\rangle=\prod_{p=1}^P e^{-i\beta_p\hat{H}_M}e^{-i\gamma_p\hat{H}_C}|+\rangle^N$ is obtained by implementing a circuit on a N qubit gate-based quantum computer.
- In total we have 2P parameters $\gamma = (\gamma_{p=1}, ..., \gamma_{p=P})$ and $\beta = (\beta_{p=1}, ..., \beta_{p=P})$.

The QAOA a brief introduction:

- For our simulations we use the Ising Hamiltonian $\hat{H}_C = \sum_i h_i \sigma_i^z + \sum_{i < j} J_{i,j} \sigma_i^z \otimes \sigma_j^z$ as our cost Hamiltonian.
- The second Hamiltonian \hat{H}_M in the generator is defined as $\hat{H}_M = \sum_i -\sigma_i^x$.
- In this talk, i and j are elements of the set $\{0, ..., N-1\}$.
- Once we have fixed the cost Hamiltonian, we need problems (in terms of parameters h_i and $J_{i,j}$) to solve with the QAOA.

Find the ground state of the Ising Hamiltonian under the following constrains

- (1) The problems have to fit to the hardware.
- (2) The two-qubit gates should be involved $J_{i,j} \neq 0$.
- (3) The problems should have a unique ground state (GS).
- (4) The pen and paper model should find the GS (GS prob. > 0.95).
- (5) The run times have to be reasonable, which means we can do about 50 cost function evaluations.
- (6) We need problems for different circuit depths, i.e. $P \in \{2, 3, 4, 5\}$.
- (7) All previous points should be satisfied for a fixed set of optimisation settings.

How do we model the virtual chips?

 We use a lumped-element model to describe the different components of the system and the connection between them.

¹With permission of Jonas Bylander from Chalmers University of Technology

The lumped-element model

- We assume that all two-terminal elements, i.e. capacitors, inductors and Josephson junctions, can be described by a unique relation.
- This constitutive relation connects the current *I* flowing through the element and the voltage difference *V* at its two ports.
- Kirchhoff's laws provide relations which connect the different elements.
- Since we use the Hamiltonian formalism to quantise the circuit, we prefer to work with the flux variable $\hat{\varphi}$ and its conjugate charge variable \hat{n} , instead of the voltage V and the current I.

The fixed-frequency transmon

$$\hat{H}_{\mathsf{Fix.}} = E_{C} \left(\hat{n} - n_{g}(t) \right)^{2} - E_{J} \cos \left(\hat{\varphi} \right)$$

The flux-tunable transmon

$$\hat{H}_{\mathsf{Tun.}} = E_{C}\hat{n}^{2} - E_{J,I}\cos\left(\hat{\varphi}\right) - E_{J,r}\cos\left(\hat{\varphi} - \varphi(t)\right)$$

$$\varphi(t) = \Phi_{\mathsf{ext.}}(t)/\phi_{0}$$

The LC resonator

$$\hat{H}_{\mathrm{Res.}} = \omega^R \hat{a}^\dagger \hat{a}$$

The complete model Hamiltonian

$$\begin{split} &\hat{H}_{\text{Circuit}} = \hat{H}_{\text{Fix.},\Sigma} + \hat{H}_{\text{Tun.},\Sigma} + \hat{H}_{\text{Res.},\Sigma} + \hat{V}_{\text{Int.}} \\ &\hat{H}_{\text{Fix.},\Sigma} = \sum_{i \in I} E_{C_i} \left(\hat{n}_i - n_{g,i}(t) \right)^2 - E_{J_i} \cos \left(\hat{\varphi}_i \right), \\ &\hat{H}_{\text{Tun.},\Sigma} = \sum_{j \in J} E_{C_j} \left(\hat{n}_j - n_{g,j}(t) \right)^2 - E_{J_{l,j}} \cos \left(\hat{\varphi}_j \right) - E_{J_{r,j}} \cos \left(\hat{\varphi}_j - \varphi_j(t) \right), \\ &\hat{H}_{\text{Res.},\Sigma} = \sum_{k \in K} \omega_k^R \hat{a}_k^{\dagger} \hat{a}_k, \\ &\hat{V}_{\text{Int.}} = \sum_{(i,i') \in I \times I'} G_{i,i'}^{(0)} \left(\hat{n}_i \otimes \hat{n}_{i'} \right) + \sum_{(j,i) \in J \times I} G_{j,i}^{(1)} \left(\hat{n}_j \otimes \hat{n}_i \right) \\ &+ \sum_{(j,j') \in J \times J'} G_{j,j'}^{(2)} \left(\hat{n}_j \otimes \hat{n}_{j'} \right) + \sum_{(k,i) \in K \times I} G_{k,i}^{(3)} \left(\hat{a}_k + \hat{a}_k^{\dagger} \right) \otimes \hat{n}_i \\ &+ \sum_{(k,i) \in K \times J} G_{k,j}^{(4)} \left(\hat{a}_k + \hat{a}_k^{\dagger} \right) \otimes \hat{n}_j + \sum_{(k,k') \in K \times K'} G_{k,k'}^{(5)} \left(\hat{a}_k + \hat{a}_k^{\dagger} \right) \otimes \left(\hat{a}_{k'} + \hat{a}_{k'}^{\dagger} \right) \end{split}$$

The two-qubit system

The two-qubit device parameters in GHz

i	$\omega_i^R/2\pi$	$\omega_i^Q/2\pi$	$\alpha_i/2\pi$	$E_{C_i}/2\pi$	$E_{J_i,I}/2\pi$	$E_{J_i,r}/2\pi$	$\varphi_{0,i}/2\pi$
0	n/a	4.200	-0.320	1.068	2.355	7.064	0
1	n/a	5.200	-0.295	1.037	3.612	10.837	0
2	45.000	n/a	n/a	n/a	n/a	n/a	n/a

$G_{0,2}/2\pi$	$G_{1,2}/2\pi$	
0.300	0.300	

• Note that throughout this talk all flux offsets $\varphi_{0,i}$ are given in units of the flux quantum ϕ_0 .

The three-qubit system

The three-qubit device parameters in GHz

i	$\omega_i^R/2\pi$	$\omega_i^Q/2\pi$	$\alpha_i/2\pi$	$E_{C_i}/2\pi$	$E_{J_i,I}/2\pi$	$E_{J_i,r}/2\pi$	$\varphi_i/2\pi$
0	n/a	4.200	-0.320	1.068	2.355	7.064	0
1	n/a	5.200	-0.295	1.037	3.612	10.837	0
2	n/a	5.700	-0.285	1.017	4.374	13.122	0
3	45.000	n/a	n/a	n/a	n/a	n/a	n/a
4	45.000	n/a	n/a	n/a	n/a	n/a	n/a

$G_{0,3}/2\pi$	$G_{1,3}/2\pi$	$G_{1,4}/2\pi$	$G_{2,4}/2\pi$	
0.300	0.300	0.300	0.300	

The control pulses

Two-qubit CZ gates are implemented with unimodal flux control pulses

$$arphi_j(t) = rac{\delta}{2} \left(ext{erf} \left(rac{t}{\sqrt{2}\sigma}
ight) - ext{erf} \left(rac{tT_p}{\sqrt{2}\sigma}
ight)
ight).$$

- Note that throughout this talk all pulse amplitudes δ are given in units of the flux quantum ϕ_0 .
- Single-qubit $R_X(\pi/2)$ rotations are implemented with charge control pulses

$$n_{i/j}(t) = a \frac{\exp\left(\frac{(2t - T_d)^2}{8\sigma^2}\right) - \exp\left(\frac{T_d^2}{8\sigma^2}\right)}{1 - \exp\left(\frac{T_d^2}{8\sigma^2}\right)} \cos\left(\tilde{\omega}t - \gamma\right).$$

• The DRAG component is not shown here (the corresponding pulse parameter is referred to as β).

The control pulses

• Flux control pulse (left panel) and charge control pulse (right panel).

QAOA program structure

• PFA = Product Formula Algorithm (solves the TDSE for $\hat{H}_{Circuit}$)

The classical optimisation algorithms

- For our simulations we use the NLopt library which contains more then ten gradient-free optimisation algorithms.
- BOBYQA = Bound Optimisation By Quadratic Approximation.
- COBYLA = Constrained Optimisation By Linear Approximations.
- Nelder-Mead = Simplex Method (considered good for noisy problems).
- Bound-constrained = Predecessor of BOBYQA.

Quality assessment of two-qubit chip

- The Frobenius square norm μ_{F^2} .
- The diamond norm μ_{\diamond}
- The average infidelity $\mu_{\mathsf{IF}_{\mathsf{avg}}}$
- ullet A leakage measure μ_{Leak}

Pulse	μ_{F^2}	μ_{\diamond}	$\mu_{IF_{avg}}$	μ Leak
$RX(\pi/2)_0$	0.0002	0.0084	0.0004	0.0004
$RX(\pi/2)_1$	0.0003	0.0108	0.0004	0.0004
$CZ^1_{0,1}$	0.0008	0.0193	0.0014	0.0012

Results for the two-qubit chip

Initialisation of γ and β with a linear annealing schedule

- Note that the initial success probability is quite high and grows with *P*.
- FGG's paper contains a section with the title: relation to the quantum adiabatic algorithm.
- We use the line of reasoning presented in this section to initialise the γ and β parameters with a linear annealing schedule.
- We expect to see that the initial success probability grows with the discrete variable P.

Quality assessment of the three-qubit chip

- The Frobenius square norm μ_{F^2} .
- The diamond norm μ_{\diamond}
- ullet The average infidelity $\mu_{\mathsf{IF}_{\mathsf{avg}}}$
- A leakage measure μ_{Leak}

Pulse	μ_{F^2}	μ_{\diamond}	$\mu_{IF_{avg}}$	μ_{Leak}
$RX(\pi/2)_0$	0.010	0.015	0.003	0.002
$RX(\pi/2)_1$	0.006	0.013	0.002	0.001
$RX(\pi/2)_2$	0.007	0.014	0.002	0.001
$CZ_{0,1}^1$ $CZ_{1,2}^2$	0.008	0.049	0.010	0.010
$CZ_{1,2}^2$	0.001	0.014	0.002	0.002

Results for the three-qubit chip

CZ gate flux control pulse for four different static biases $\Delta\delta$

Twenty CNOT repetitions with the two-qubit chip for different static biases of the pulse amplitude δ

• The initial CZ_{0,1} gate infidelity increases roughly from 0.001 without bias to 0.01 with bias $\Delta\delta/2\pi=10^{-4}$.

Results for the two-qubit chip with static bias

 $\Delta \delta/2\pi = 10^{-4}$

Results for the two-qubit chip with static bias $\Delta\delta/2\pi=10^{-4}$

- Note that the initial success probability for P = 5 is now the lowest while the one for P = 2 is the highest.
- The carefully crafted parameter initialisation has lost its value.
- However, the overall performance for the given Ising problems and the optimisation settings is still quite good.

Results for the three-qubit chip with static bias

 $\Delta \delta/2\pi = 10^{-4}$

Final remarks regarding the results

- The results are only valid for the virtual chips we discussed and the circuit model!
- We performed simulations (data not shown) with other models,
 i.e. simpler models and/or different device architectures.
- The results can vary a lot for the same Ising problems and the same optimisation settings.
- This makes it very difficult to judge the QAOA.

Summary and conclusions

- We find that for the given problems and simulation settings the QAOA yields reasonably good results.
- We saw an example where QAOA was able to compensate for low-quality two-qubit gates.
- We deal with highly parameterised models which are difficult to understand.
- Therefore, we should not compare different devices by means of this algorithm.

Outlook

- Simulate different types of variational problems, i.e. different problem Hamiltonians (the software can do this already).
- Repeat the simulations with different types of circuit architectures and larger chips (these are already calibrated).
- Run the problems on the devices in the Jülich laboratory.
- Test different noise spectra for different devices.

The end

- Many thanks to the QIP group and Daniel Zeuch for useful comments regarding the talk!
- Thank you for your attention!

The problem at hand

We would like to solve the TDSE numerically

$$i\frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}(t)|\psi(t)\rangle.$$

• The well known, formal solution to this problem reads

$$\hat{\mathcal{U}} = \mathcal{T} exp(-i\int_{t}^{t+ au} \hat{H}(t^{'})dt^{'}).$$

• If we assume that $au\ll 1$ and $\hat{H}(t)$ is piecewise constant between two time steps t and t+ au, we have

$$|\psi(t+\tau)\rangle = \exp(-i\tau\hat{H}(t+\tau/2))|\psi(t)\rangle.$$

Results for the three-qubit chip

Results for the two-qubit chip

Results for the two-qubit chip with static bias

 $\Delta \delta / 2\pi = 10^{-4}$

Results for the three-qubit chip with static bias

 $\Delta \delta/2\pi = 10^{-4}$

How to determine the action of $\exp(-i\tau \hat{H}(t+\tau/2))$ efficiently with respect to $|\psi(t)\rangle$?

• Make use of the Lie-Trotter-Suzuki product formula

$$\exp\left(\sum_{i\in\mathcal{I}}\hat{A}_i\right) = \lim_{n\to\infty} \left(\prod_{i\in\mathcal{I}} \exp\left(\hat{A}_i/n\right)\right)^n,$$

and decompose $\hat{H} = \sum_{i \in \mathcal{I}} \hat{K}_i$ into Hermitian operators \hat{K}_i .

For the first-order approximation we have

$$\hat{\mathcal{U}}_1 \coloneqq \prod_{i \in \mathcal{I}} \exp(-i au \hat{K}_i).$$

• One can formally show that the first-order local error is given by

$$\|\hat{\mathcal{U}} - \hat{\mathcal{U}}_1\| \le c_1 \tau^2.$$

How to determine the action of $\exp(-i\tau \hat{H}(t+\tau/2))$ efficiently with respect to $|\psi(t)\rangle$?

For the second-order approximation we have

$$\hat{\mathcal{U}}_2 \coloneqq \left(\prod_{i=|\mathcal{I}|-1}^1 \mathrm{e}^{-i au\hat{\mathcal{K}}_i/2}
ight) \mathrm{e}^{-i au\hat{\mathcal{K}}_0} \left(\prod_{i=1}^{|\mathcal{I}|-1} \mathrm{e}^{-i au\hat{\mathcal{K}}_i/2}
ight).$$

One can show that the second-order local error is given by

$$\|\hat{\mathcal{U}} - \hat{\mathcal{U}}_2\| \le c_2 \tau^3.$$

A simple model Hamiltonian in the harmonic bias

$$\begin{split} \hat{H} &= \hat{H}_{\text{Transmon},\Sigma} + \hat{H}_{\text{Resonator},\Sigma} + \hat{V}_{\text{Interaction}} \\ \hat{H}_{\text{Transmon},\Sigma} &= \sum_{i \in I} \omega_i^Q(t) \hat{b}_i^\dagger \, \hat{b}_i + \frac{\alpha_i^Q(t)}{2} \hat{b}_i^\dagger \, \hat{b}_i \left(\hat{b}_i^\dagger \, \hat{b}_i - \hat{I} \right), \\ \hat{H}_{\text{Resonator},\Sigma} &= \sum_{j \in J} \omega_j^R \, \hat{a}_j^\dagger \, \hat{a}_j, \\ \hat{V}_{\text{Interaction}} &= \sum_{(i,i') \in I \times I'} g_{i,i'}^{(0)}(t) \left(\hat{b}_i + \hat{b}_i^\dagger \right) \otimes \left(\hat{b}_{i'} + \hat{b}_{i'}^\dagger \right) \\ &+ \sum_{(j,j') \in J \times J'} g_{j,j'}^{(1)} \left(\hat{a}_j + \hat{a}_j^\dagger \right) \otimes \left(\hat{a}_{j'} + \hat{a}_{j'}^\dagger \right) \\ &+ \sum_{(j,i') \in J \times J} g_{j,i'}^{(2)}(t) \left(\hat{a}_j + \hat{a}_j^\dagger \right) \otimes \left(\hat{b}_{i'} + \hat{b}_{i'}^\dagger \right) \end{split}$$

The adiabatic algorithm makes use of the fact that

$$\hat{H}(t) = (1-s(t))\hat{H}_{\mathsf{Start}} + s(t)\hat{H}_{\mathsf{Final}}$$
 $\hat{H}_{\mathsf{Start}} = \sum_i -\sigma_i^{\mathsf{x}}$ $\hat{H}_{\mathsf{Final}} = \sum_i h_i \sigma_i^{\mathsf{z}} + \sum_{i < i} J_{i,j} \sigma_i^{\mathsf{z}} \otimes \sigma_j^{\mathsf{z}}$

- If initialise a system $\hat{H}(t)$ in its ground state and vary $s(t) \in [0,1]$ slow enough, the system will remain in its instantaneous ground state.
- Note that $|+\rangle$ is the ground state of \hat{H}_{Start} .

Trotterisation of the time-evolution operator $\hat{\mathcal{U}}(T)$

$$\begin{split} \hat{\mathcal{U}}(T) &= \mathcal{T}e^{-i\int_0^T \hat{H}(t)dt} \\ \hat{\mathcal{U}}(T) &\simeq \prod_{p=0}^P e^{-i\hat{H}(t_p)\tau} \\ \hat{\mathcal{U}}(T) &\simeq \prod_{p=0}^P e^{-i(1-s(t_p))\hat{H}_{\mathsf{Start}}\tau} e^{-is(t_p)\hat{H}_{\mathsf{Final}}\tau} \\ \hat{\mathcal{U}}(T) &\simeq \prod_{p=0}^P e^{-i\beta_p\hat{H}_{\mathsf{Start}}} e^{-i\gamma_p\hat{H}_{\mathsf{Final}}} \end{split}$$

• Such that $\beta_p = (1 - s(t_p))\tau$ and $\gamma_p = s(t_p)\tau$.

Recasting the operator $\hat{\mathcal{U}}(T) \to \hat{\mathcal{U}}(\gamma_p, \beta_p)$

- The previous steps enable us to make use of the diagonal structure of \hat{H}_{Start} and \hat{H}_{Final} (in their respective bias).
- Rearranging the exponential operators yields

$$\begin{split} \hat{U}(\gamma_p,\beta_p) &= e^{-i\beta_p \hat{H}_{\mathsf{Start}}} e^{-i\gamma_p \hat{H}_{\mathsf{Final}}}, \\ e^{-i\gamma_p \hat{H}_{\mathsf{Final}}} &= \prod_i e^{(2\gamma_p h_i) - i\sigma_i^z/2} \prod_{i < j} e^{(\gamma_p J_{i,j}) - i\sigma_i^z \otimes \sigma_j^z}, \\ e^{-i\beta_p \hat{H}_{\mathsf{Start}}} &= \prod_i e^{(-2\beta_p) - i\sigma_i^x/2}, \\ \hat{U}(\gamma_p,\beta_p) &= \prod_i e^{i\beta_p \sigma_i^x} \prod_i e^{-i\gamma_p h_i \sigma_i^z} \prod_{i < j} e^{-i\gamma_p J_{i,j} \sigma_i^z \otimes \sigma_j^z}. \end{split}$$

Implementation of $|\gamma,\beta\rangle=\prod_{p=1}^P e^{-i\beta_p\hat{H}_M}e^{-i\gamma_p\hat{H}_C}\ket{+}^N$

• First move the system into the state $|+\rangle^N$.

• Since $\sum_i h_i \sigma_i^z$ and $\sum_{i < j} J_{i,j} \sigma_i^z \otimes \sigma_j^z$ commute, we can implement the corresponding exponential operators individually one after another.

Step 0: implement $\prod_{i < j} e^{-i\gamma_p J_{i,j} \sigma_i^z \otimes \sigma_j^z}$

• A single term in the product $\prod_{i < j} e^{-i\gamma_p J_{i,j} \sigma_i^z \otimes \sigma_j^z}$ can be implement as:

• Note that one can interchange the qubits without changing the results.

Step 1: implement $\prod_i e^{-i\gamma_p h_i \sigma_i^z}$

Step 2: implement $e^{-i\beta_p \hat{H}_M} = \prod_i e^{i\beta_p \sigma_i^x}$

• Once we have the circuit, we need problems to solve with the QAOA.

Various error measures for the target operator \hat{U}

• If \hat{M} denotes the projected state vector operator, we can define $\hat{V} = \hat{U}\hat{M}^{\dagger}$ such that the error measures can be expressed as

$$\begin{split} \mu_{F^2} &= \|\hat{M} - u\hat{U}\|_F, \\ \mu_{\mathsf{F}_{\mathsf{Avg}}} &= \frac{\|\mathsf{Tr.}(\hat{V})\|_1^2 + \mathsf{Tr.}(\hat{M}\hat{M}^\dagger)}{D\left(D+1\right)}, \\ \mu_{\diamond} &= \frac{1}{2} \sup_{|\psi\rangle \in \mathcal{H}_D} \left(\|\left(\hat{V}^\dagger \otimes \hat{I}\right)|\psi\rangle\!\langle\psi| \left(\hat{V}^\dagger \otimes \hat{I}\right)^\dagger - |\psi\rangle\!\langle\psi| \,\|_{\mathsf{Tr.}} \right), \\ \mu_{\mathsf{Leak}} &= 1 - \left(\frac{\mathsf{Tr.}(\hat{M}\hat{M}^\dagger)}{D}\right), \end{split}$$

• where $u = \pm \sqrt{\text{Tr.}(\hat{V}^{\dagger})/\text{Tr.}(\hat{V}^{\dagger})^*}$, $D = \dim(\mathcal{H}_D)$ and $\mathcal{H}_D \subseteq \mathbb{C}^D$.