000906586 001__ 906586
000906586 005__ 20240705080646.0
000906586 0247_ $$2doi$$a10.3389/fnins.2022.826083
000906586 0247_ $$2ISSN$$a1662-453X
000906586 0247_ $$2ISSN$$a1662-4548
000906586 0247_ $$2Handle$$a2128/30883
000906586 0247_ $$2pmid$$a35250461
000906586 0247_ $$2WOS$$aWOS:000768045900001
000906586 037__ $$aFZJ-2022-01537
000906586 082__ $$a610
000906586 1001_ $$0P:(DE-Juel1)171823$$aKiefer, Christian M.$$b0$$ufzj
000906586 245__ $$aRevealing Whole-Brain Causality Networks During Guided Visual Searching
000906586 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000906586 3367_ $$2DRIVER$$aarticle
000906586 3367_ $$2DataCite$$aOutput Types/Journal article
000906586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719988065_28749
000906586 3367_ $$2BibTeX$$aARTICLE
000906586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906586 3367_ $$00$$2EndNote$$aJournal Article
000906586 520__ $$aIn our daily lives, we use eye movements to actively sample visual information from our environment (“active vision”). However, little is known about how the underlying mechanisms are affected by goal-directed behavior. In a study of 31 participants, magnetoencephalography was combined with eye-tracking technology to investigate how interregional interactions in the brain change when engaged in two distinct forms of active vision: freely viewing natural images or performing a guided visual search. Regions of interest with significant fixation-related evoked activity (FRA) were identified with spatiotemporal cluster permutation testing. Using generalized partial directed coherence, we show that, in response to fixation onset, a bilateral cluster consisting of four regions (posterior insula, transverse temporal gyri, superior temporal gyrus, and supramarginal gyrus) formed a highly connected network during free viewing. A comparable network also emerged in the right hemisphere during the search task, with the right supramarginal gyrus acting as a central node for information exchange. The results suggest that all four regions are vital to visual processing and guiding attention. Furthermore, the right supramarginal gyrus was the only region where activity during fixations on the search target was significantly negatively correlated with search response times. Based on our findings, we hypothesize that, following a fixation, the right supramarginal gyrus supplies the right supplementary eye field (SEF) with new information to update the priority map guiding the eye movements during the search task.
000906586 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000906586 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000906586 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906586 7001_ $$0P:(DE-Juel1)144576$$aIto, Junji$$b1$$ufzj
000906586 7001_ $$0P:(DE-Juel1)131747$$aWeidner, Ralph$$b2$$ufzj
000906586 7001_ $$0P:(DE-Juel1)131752$$aBoers, Frank$$b3$$ufzj
000906586 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b4$$ufzj
000906586 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b5$$ufzj
000906586 7001_ $$0P:(DE-Juel1)131757$$aDammers, Jürgen$$b6$$eCorresponding author$$ufzj
000906586 773__ $$0PERI:(DE-600)2411902-7$$a10.3389/fnins.2022.826083$$gVol. 16, p. 826083$$p826083$$tFrontiers in neuroscience$$v16$$x1662-453X$$y2022
000906586 8564_ $$uhttps://juser.fz-juelich.de/record/906586/files/fnins-16-826083.pdf$$yOpenAccess
000906586 8767_ $$d2022-12-20$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507 USD
000906586 909CO $$ooai:juser.fz-juelich.de:906586$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000906586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171823$$aForschungszentrum Jülich$$b0$$kFZJ
000906586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144576$$aForschungszentrum Jülich$$b1$$kFZJ
000906586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131747$$aForschungszentrum Jülich$$b2$$kFZJ
000906586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131752$$aForschungszentrum Jülich$$b3$$kFZJ
000906586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b4$$kFZJ
000906586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b5$$kFZJ
000906586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131757$$aForschungszentrum Jülich$$b6$$kFZJ
000906586 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000906586 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000906586 9141_ $$y2022
000906586 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906586 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906586 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000906586 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906586 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000906586 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906586 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906586 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000906586 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906586 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000906586 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROSCI-SWITZ : 2021$$d2022-11-09
000906586 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000906586 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000906586 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:19:45Z
000906586 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:19:45Z
000906586 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:19:45Z
000906586 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000906586 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000906586 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000906586 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-09
000906586 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT NEUROSCI-SWITZ : 2021$$d2022-11-09
000906586 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
000906586 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000906586 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x2
000906586 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x3
000906586 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x4
000906586 980__ $$ajournal
000906586 980__ $$aVDB
000906586 980__ $$aI:(DE-Juel1)INM-11-20170113
000906586 980__ $$aI:(DE-Juel1)INM-4-20090406
000906586 980__ $$aI:(DE-Juel1)INM-3-20090406
000906586 980__ $$aI:(DE-Juel1)INM-6-20090406
000906586 980__ $$aI:(DE-Juel1)VDB1046
000906586 980__ $$aAPC
000906586 980__ $$aUNRESTRICTED
000906586 9801_ $$aAPC
000906586 9801_ $$aFullTexts
000906586 981__ $$aI:(DE-Juel1)IAS-6-20130828