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Chapter 1

Introduction

The brain is an incredibly complex organ, and research on it has been done for over a

century. Neuroscience is a relatively young field, and it aims to understand the function

and complex structure of the brain. The brain’s complexity stems mostly from the inter-

connection of its cells. There are 1012 cells in the human brain, and up to 1015 connections

between them [18]. To unravel the mystery of the brain, we have to understand its inner

workings. In science, proving a hypothesis is usually done by measuring, however mea-

suring the neuronal activity inside the brain turns out to be a difficult task. Because of

this, neuroscientists have to resort to simulating parts of the brain using modern com-

puting power. Thus, network simulation software has become an integral part of modern

neuroscience.

Writing the code for these simulations can be time consuming and requires expert

knowledge in computer science. Network simulation software, such as NEST [20] or

NEURON [17], can offer simulations of these networks at a high performance. There is a

multitude of different simulators in use, with varying scope and functionality. Typically,

to operate a simulator, the user needs in-depth technical knowledge for even basic tasks.

Neuroscience has become an extremely interdisciplinary field where biology, psychology,

medicine, and computer science intersect. Separating the technical knowledge from the

scientific knowledge is an important step in making neuroscience more accessible for

scientists of all fields. One way to achieve this separation is by guiding the user with a

graphical user interface (GUI). A well designed GUI can teach a user its features in an

intuitive way, and reduces mental load when designing network models.

Another advantage of a separation of simulation and design is the independence of

the simulation software used. If a model can be simulated with different simulators

without reimplementation, additional methods for cross validation of the results is easily

available. Updating simulation software would not break model definitions, and switching

3



the simulation software would be trivial. To separate design from simulation, a translation

between the two domains has to be performed.

1.1 Network Models

When trying to analyze the brain, network models are an important tool to get an in-

sight of its inner workings. These models are mathematical abstractions which can be

simulated computationally. These computations are usually done by neuronal simula-

tors, which offer various tools for creating and simulating models, and can optimize the

performance of the simulation. The output of a simulated model can be compared to

biological measurements to test its validity.

The computational models are simplified versions of the brain’s biological components.

A computational model includes abstractions to increase performance. This section will

introduce the neuroscientific terms and mathematical abstractions that are relevant to

this work. A model usually consists of neurons, synapses and inputs. A neuron is a

cell made up of three parts: the dendrites, the soma, and the axon [11]. Signals from other

neurons are received by the dendrites, and passed along a tree-like structure (dendritic

tree) to the soma. The soma is the central part of the neuron; when the incoming signals

pass a certain threshold, the neuron fires. The axon passes the outgoing signal to other

neurons. These axon-dendrite connections are called synapses. A synapse’s sending

neuron is called the presynaptic neuron, and the receiving neuron the postsynaptic

neuron. The signals a neuron fires are short electrical pulses, also called spikes or

action potentials. These signals are transmitted (usually through a biochemical process)

through the synapse to the postsynaptic neuron’s cell membrane.

To increase the simulation performance, the different processes of neurons and synapses

are abstracted through computational models. In simulation software, neurons are often

simplified as a point neuron model, which simulates the interactions of the soma, axon,

and dendrites in the form of mathematical formulas. Synapses are also abstracted to

fit mathematical models, generally controlled by a synaptic weight (synaptic strength)

or and synaptic delay. The synaptic weight indicates the influence a spike has on its

postsynaptic neuron. The synaptic delay corresponds to the time a spike has to travel

to reach the postsynaptic neuron. All synapses can be split into two types: excitatory

and inhibitory synapses. Excitatory synapses are defined by a positive synaptic weight

and increase the membrane potential of the postsynaptic neuron. Inhibitory synapses

have a negative synaptic weight and decrease the membrane potential. Some synapse

models also support changing synaptic weights, called synaptic plasticity. Plasticity is

an important aspect of the network’s learning process. The underlying plasticity models
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are more complex than static synapses, take more computational power to simulate, and

have a larger parameter space.

Since models of the brain can become quite complex with a large number of neurons,

the neurons can be grouped together into neuron populations when designing a net-

work. The neurons are typically grouped to organize anatomical or functional structures

together. Similarly, the connections between the neurons in the neuron populations can

be grouped into projections. Projections are also directional and have a source and

target population. A projection encompasses all the connections between neurons of the

source population and the neurons of the target population. This can either be a sim-

ple grouping of connection instances, or an abstract pattern. A connection pattern can

generate the actual connection instances of a projection when the simulator is building

the model. This abstraction can save memory and workload when designing the model.

Instead of defining millions of connections by hand, a projection can build them based

on the pattern’s algorithm.

To take into account the influence from regions not explicitly defined in the model,

network models usually have some form of input to their populations. These inputs can

be sensory signals, simplified areas of the brain that are not in the model, or measured

data that is fed into the simulation. The mechanism of the input can vary, from applying

current directly to a neuron’s cell membrane, to generating random spikes for a given

duration. Usually, the target of the input is a population in the model, but single neurons

can also be stimulated.

Combining populations, projections and inputs into a model allows for recreating

many of the neuronal structures that can be found in the brain, given the synapse and

neuron models offer an accurate recreation of the functionality of the cells. Current simu-

lations lack the capacity to model the complexity of the brain. The more connections and

neurons a model has, the higher the computational power needed for simulation. These

limitations can be caused by overhead in distributed systems and memory consumption

[16]. Projects like the Blue Brain Project [21] aim to simulate the whole human brain

using modern supercomputers. Current supercomputers are able to simulate models with

up to 108 cells. Research focuses on simulating simplified versions of the brain with a

percentage of the neurons and connections, or simulating a specific subset or area of the

brain.

1.2 Problem Statement

When a neuroscientist wants to test a new hypothesis with a modeling approach, he first

has to design the model. Usually, this is done analogue on paper. The populations and
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their connections of the model have to be designed by hand, and the way of visualizing

the model has to be reinvented for every model. This way of visualizing introduces

ambiguity as there is no concrete standard for network models. After a model has been

designed by hand, it has to be tested in a simulator. Translating the designed model into

a simulation specific description can be a daunting task for the user, and requires in-depth

knowledge of the simulator. Even when a model has been implemented in a simulation

language, understanding the simulation code is often difficult [4], and transferring the code

to a different simulator is complicated, as various simulators offer completely different

interfaces for user interaction. This project attempts to find a common visual language

for representing connectivity, while also allowing automatic translation of this visual

language to any simulator.

In order to reduce the complexity of the interactions between user and simulator, a

GUI is proposed which can display the model information using a visual representation.

The GUI can be connected to a translator in order to produce simulator independent

connectivity data from a created model. The translator can then enable a simulation

using different neuronal simulators. This allows a user to simulate a model without

extensive knowledge of the underlying simulator.

The visual representation that has to be developed needs to be intuitive for researchers

of neuroscience and to convey large amounts of information quickly to the user. The focus

of the representation is on the connectivity between groups of neurons, also called the

connectome [28] of a model. Due to the large amounts of data in a connectome, visu-

alizing every synaptic connection is not feasible. Instead, the visualization has to focus

on the projections as template groups of connections, using connectivity patterns. The

visualization has to balance abstracting large amounts of data and giving detailed infor-

mation, while providing deep insight into the model. Information to visualize can include

the number of connections, the pattern of connectivity, or the type of computational

model.

Development of the GUI itself is not a part of this project. Instead, the GUI is

developed in parallel by a team of the Grupo de Modelado y Realidad Virtual (GMRV)

at the Universidad Rey Juan Carlos (URJC) in Madrid. The GMRV is responsible

for implementing the visual language developed in this project in their visualization

framework NeuroScheme (see Section 1.3.4). The visual language was developed to fit and

complement the framework. To aid the creation of the GUI, conducting user interviews

and finding user requirements was one of the tasks for this project.

The translator poses the link between the GUI and the simulator. The translation

requires the visual representation to be bound to data structures which can be passed

from the GUI to the translator. The translator has to be developed with a modular
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design in mind to allow simulator independence and to ensure compatibility with the in

parallel developed version of NeuroScheme.

1.3 State of Technology

Designing a visual language and translating it requires various technologies and software.

To solve the tasks of this project, the following solutions have to be found:

• A GUI for displaying the visual language.

• A standard for defining network models.

• A way of expressing and generating connectivity in a simulator independent way.

• Simulators for the network simulation.

• An interface to the simulators.

This chapter will introduce the software and specifications used in this project, and show

related work that has been done on visualization.

1.3.1 The Connection Set Algebra

When describing the connectivity of a model, it is often done without adherence to stan-

dards [23]. Implementing the connectivity in a simulator can be difficult and is prone to

ambiguity in the model description. Model definitions either rely on complex written out

descriptions of their connectivity functions, pieces of code written for a specific simula-

tor, or connectivity patterns without formal definitions. This makes the reproducibility

of network models difficult, as models are designed for a specific simulation environment.

Transferring the code for generating the connectivity makes reproducing the experiment

easier, but implementing a model with complex network structures in a different simula-

tor requires just as much work as building from scratch. To provide a formal standard

that can be used to convey the connectivity of a model, not only in written text and

formulas, but also among neuronal simulators, the Connection Set Algebra (CSA) was

developed by Mikael Djurfeldt [7].

The Connection Set Algebra is a mathematical representation of connections between

populations of neurons. CSA is a way to formalize connectivity patterns in an abstract

language using set algebra. With this abstract formalism a connectivity pattern becomes

independent of the different pattern definitions of various simulators. This independence

is an important aspect of the modular nature of CSA. The abstract connectivity formalism

that is offered by the algebra allows linking CSA with any simulator.
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To formalize the connectivity between two neuron populations, the connection set

algebra introduces the concept of a connection set. A connection set contains the infor-

mation needed for a projection, including which neurons are connected, and parameter

values for the synaptic model. The actual connectivity of the connection set is described

in the connection set’s mask. A mask M̄ can be interpreted in three different ways: In

traditional neuroscience terms, it can be seen as a connection matrix between two popula-

tions, where a boolean entry M̄ij indicates a connection between the presynaptic neuron

with index i and the postsynaptic neuron with index j. Figure 1.1a and Figure 1.1b

show how connectivity can be represented by a connection matrix. This is similar to the

interpretation as a mapping function M̄ : N0 × N0 → {F , T } that maps a boolean value

to a tuple of indices. For use in the connection set algebra, the mask is also seen as a

set of tuples. A tuple (i, j) is part of the set if there exists a connection between the

neurons. This interpretation allows the Connection Set Algebra to use set arithmetic to

create new sets.

An important part for the simulator independence of CSA is that the masks are

infinite in nature. An infinite mask is independent of the size of the populations it

connects. Because the mask does not need any information about the neurons it connects,

multiple populations can be connected with the same expression, and population size can

be changed without having to change the connectivity.

The masks can be created from elementary masks provided by the algebra, which

serve as a base to all other masks. Elementary masks try to cover the most basic cases

of connectivity patterns. The elementary masks are as follows:

Full mask The full mask Ω̄ represents a connectivity pattern where every presynaptic

neuron is connected to every postsynaptic neuron.

Empty mask The empty mask ∅̄ represents no connectivity at all.

One-to-one The one-to-one mask δ̄ connects exactly one postsynaptic-neuron to every

presynaptic-neuron in increasing order of IDs.

Random The random mask ρ̄(p) is a parametrized mask that connects the two neuron

populations randomly. For every neuron combination a Bernoulli trial is performed

to determine if a connection exists.

FanIn/FanOut The parametrized FanIn mask ρ̄0(n) connects n presynaptic neurons to

every postsynaptic neuron. The FanOut mask ρ̄1(n) similarly connects n postsy-

naptic neurons to every presynaptic neuron.
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(a) Connectivity pattern between two pop-
ulations.

(b) A CSA mask for the connectivity
in Figure 1.1a. The mask corresponds
to the connection matrix.

(c) Applying the difference operator on the full mask and the one-to-one
mask. This matches the CSA expression Ω̄− δ̄. The resulting mask is a full
connectivity without self connections.

Figure 1.1: CSA masks as connectivity matrices.
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All the elementary masks are infinite and work on any kind of population sizes. These

elementary masks alone can cover most of the connectivity patterns commonly used in

network models, and can also be found as connectivity modes in most simulators.

To create connectivity patterns that go beyond the simple elementary masks, the

algebra offers set operations to combine the existing elementary masks to create new

masks. The set operators are as follows:

• The Complement operator ¬M̄ is a unary operator that returns a set which con-

tains the connections that are not part of the original set M̄ . For example, the

complement of a one-to-one mask ¬δ̄ would equal a full connectivity without self

connections.

• The Intersect operator M̄ ∩ N̄ is a binary operator that combines two sets to

only include connections that can be found in both sets. A one-to-one connection

intersected with a random connection δ̄ ∩ ρ̄(p) would thus result in a pattern of

randomly chosen self-connections.

• The Union operator M̄ ∪ N̄ is a binary operator for adding two sets together. If a

connection is contained in either set, it will also be in the resulting set. Creating

a Union between the one-to-one mask and the random mask δ̄ ∪ ρ̄(p) would then

result in a random pattern where all self-connections are assured.

• The Difference operator M̄ − N̄ is a binary operator for excluding certain connec-

tions. All connections in M̄ are contained in the resulting set, except for those in

N̄ . Subtracting the one-to-one mask from the random mask ρ̄(p) − δ̄ would thus

result in a random mask without self-connections.

Figure 1.1c shows an example of the difference operator. If the operands are infinite

masks, the resulting masks will also be infinite. This allows masks combined through

set operators to retain the population independence. Using these operators allows for

creating complex connectivity patterns in an algebraic way.

Value Sets

The Connection Set Algebra can not only define which neurons to connect with a synapse,

but also represent the parameters of the synapse. A connection’s parameters can be

described in generic value sets {V0, V1, . . . , Vn}, where V is defined as a function V :

N0 × N0 → RN . These values may refer to any parameters of the connection, usually

the weight and delay of the synapse, but it may also refer to more complex parameters,

such as different models of plasticity. The value sets are unnamed, and the user is re-

sponsible to relay the correct value sets to the correct parameter in the simulator. In its

10



basic form, value sets are unrelated to the mask in a connection set, but they may be

combined using metrics. Using value sets gives the advantage of defining connectivity pa-

rameters alongside the actual connectivity, and keeping parameter definition independent

of simulators.

Metrics

Although many connectivity patterns are completely independent from their populations,

some patterns rely on information about the neurons they connect. For example, the

spatial connectivity pattern requires the spatial distance between neurons for generating

connections. CSA can supply this information using metrics. A metric is a function

applied to the indices of neurons and it can be interpreted as a value set of the algebra.

The distance metric for example can be defined as a function d(i, j) = ‖pi − pj‖ where p

is the positional vector for a neuron.

To create a mask based on a value set or metric, an operator needs to be applied

to the metric. The operator takes a value set and parameters as input and maps them

to a boolean value, where a true boolean indicates a connection between two neurons.

The disk operator D̄(r) for example creates a mask that connects every neuron in the

radius r. The operator has to be combined with the distance metric, which supplies

the distances between all neurons. In the algebra, applying an operator to a metric is

done by multiplying both elements from the right: d(i, j)D̄(r). Since both metrics and

operators are arbitrary functions, the algebra can be easily extended to support any form

of connectivity.

Implementation

The mathematical language that describes the Connection Set Algebra is separated from

its implementations. The Python and C++ implementations of CSA serve as the con-

nection generation libraries, which support the Connection Set Algebra, and are used to

generate the actual connectivity. The Python implementation of CSA supports most of

the features defined by the algebra in the Python package csa. Connection sets, masks

and value sets are implemented in a class structure that provides elementary masks,

intervals and metrics. The elementary masks are, for example, provided as csa.full,

csa.oneToOne and csa.random. Using Python’s basic operators, masks can be combined

to create new mask objects. A union between two CSA objects can be written in Python

as m1 + m2, a difference as m1 - m2, and an intersection as m1 * m2. The operators are

built to rely on context: The classes perform different functions depending on the oper-

ator and the class they are combined with. For example, csa.random acts as a random
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mask when combined with other masks, but when used with value sets it creates a mask

by sampling from the value set.

All CSA objects can be exported to and imported from XML. This allows CSA struc-

tures to be passed between implementations of CSA or stored separately from the gener-

ating code.

Since Python is an interpreted language it lacks the performance of compiled lan-

guages. Generating connectivity with the Python implementation can be a slow process,

and therefore is only recommended for small networks. The algorithms used for generat-

ing connectivity generally run in linear time, with the exception of spatial connectivity,

which requires an algorithm with quadratic complexity (see Section 4.2.1). While the

algorithms scale linearly, the set operations (union, difference, etc.) do add a lot of

computational load to the generation process (see Section 3.2.4). The Python imple-

mentation does support multithreading, which can be used to increase performance on

multiprocessing and distributed systems.

Currently in development for the connection set algebra is also a C++ implementa-

tion called libcsa. The C++ implementation shows a significant performance increase

opposed to the Python implementation. The performance of both libraries is compared

in Section 4.2. So far, the C++ implementation only has support for some elementary

masks, like full connectivity or random connectivity. Value sets and set operators are not

supported in libcsa as of yet. The C++ implementation can also be controlled using a

Python interface written in Cython [2]. The interface tries to support the same structure

as the Python implementation of CSA, while generating connections significantly faster.

This makes including support for the C++ version an easy task in the future, as the

interface for accessing CSA functions stay the same over all implementations.

1.3.2 Connection Generation Interface

To achieve the modularity needed for the project to work with any simulator, an interface

between the simulator and the connection generation library is needed. Using an interface

simplifies the development process of adding support for a simulator to the translator.

The interface makes the connection generation process simulator independent. The Con-

nection Generation Interface also allows switching out the Python implementation of

CSA with the faster C++ implementation in a later stage of development. An interface

would thus make development on both ends much easier.

To allow any simulator to benefit from connection generation libraries, the Connection

Generation Interface (CGI) has been developed by Djurfeldt, Davison, and Eppler [8].

The CGI allows the simulator to query connections from the linked connection generator.

Figure 1.2 shows how the CGI links a connection generating library to the simulator. For
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Figure 1.2: The CGI linking the simulator and the CG library. Figure taken from Djurfeldt
et al. [8].

this both the simulator and the connection generator need to implement the interface.

The interface describes the ConnectionGeneration class, which has to be implemented

by the connection generator.

int size() returns the number of connections for this generator.

int arity() returns the number of parameters per connection, e.g. synaptic weight and

delay.

void setMask(Mask& mask) sets the mask which determines which nodes are available

for the connection generator.

void start() has to be called before starting an iteration.

bool next(int& source, int& target, double* value) passes along the next connec-

tion in the iteration, or returns false if there are no more connections.

With both parts connected through the CGI, the user can then use the simulator with

the connection generation library. First, the user creates a new connection generator

(e.g. from the Python CSA implementation) and connects it to the CG-Interface. Then

the CG-Interface is called by the Simulator kernel to start the connection generation.

The CG-Interface converts the global IDs given by the simulation kernel into interval

masks and passes the masks to the connection generator. The interval mask is then

iterated through by the simulator and the neurons are connected based on the connection

generator’s algorithm.

The interface has been implemented for the NEST simulator and the NEST backend

in PyNN. It supports the two connection generation libraries for CSA, csa for Python

and libcsa. The implementations can be found in the libneurosim package.
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1.3.3 Neural Simulators

Simulators for spiking neural networks are a central part of computational neuroscience.

A simulator allows the creation and simulation of complex neuronal models of different

sizes. The simulators provide a language, usually a scripting language, for the user to

access the network creation and simulation functions. With the simulator, the user can

simulate single neurons, synapses, or networks of neurons.

The most common spiking neuron simulation tools are NEURON [17], NEST [20, 12],

GENESIS [3], and BRIAN [15]. Tikidji-Hamburyan et al. [29] compares the performance

and capabilities of these simulators. Of the four simulators, NEURON is the oldest and

most used in the neuroscience community. NEST is the newest of the four simulators.

While NEURON is used for more detailed models, NEST is best used for large scale

models on high performance computers. BRIAN supports simulation of both detailed

and large scale networks, but lacks high performance computing tools. All simulators

have Python interfaces or can be controlled using a simulator language (e.g. PyNEST [9]

for NEST).

Due to the many different simulators, PyNN [6] tries to aggregate existing simulators

such as NEST and NEURON by providing a high-level Python interface. The inter-

face can be used to control the different supported simulators, and experiments can be

translated from one simulator to another. To achieve this, PyNN attempts to match the

different neuron and synapse models of the simulators to each other.

An example for a specialized simulator is Topographica [1]. Topographica focuses on

simulating large scale networks consisting of topographic maps. Instead of having single

neurons form a network, Topographica simulates two-dimensional sheets of neurons as

single entities. This results in better performance for large scale networks at the cost of

accuracy. The main area of application for Topographica is the visual cortex.

1.3.4 NeuroScheme

In neuroscience, visualizations of network models can become quite convoluted. The

visualization needs to adapt to the different sizes and levels of complexity of the network

models. For this, Pastor et al. [25] have developed a visual exploratory framework called

NeuroScheme for visualizing complex network models. This tool can be used as a base

for visual connectivity generation.

NeuroScheme was developed as a visualization of morphological data in the neocortex

area of the brain. The representation of the neocortex is multiscalar. In a multiscalar

environment, elements can be observed at different abstraction levels. The levels of

abstraction in NeuroScheme are (from lowest to highest): the Branch entity, where the
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Figure 1.3: NeuroScheme’s Graphical User Interface, showing a microcolumn on the left and its
containing neurons on the right. The neuron is denoted as an excitatory neuron by the triangle
in the center. The rings stand for the size of the soma and the length of the dendrites. Inside
the microcolumn, the average neuron is displayed in the center. The bars on the bottom of the
microcolumn show the distribution of excitatory (left) vs inhibitory (right) neurons on each of
the six cortical layers.

dendritic tree of a neuron is displayed; the Neurite entity, which gives a statistical overview

of the dendrites and axons of a neuron; the neuron entity itself, showing statistics of the

cell and the dendrites; the Microcolumn entity, a collection of neurons along a cross-

section of the cortex; and the Column entity, which is a collection of microcolumns. Each

level encompasses entities from the lower levels, meaning that the user can ”zoom into” a

single element to see additional detail or the entities it is composed of. For example, the

user can select a microcolumn entity and see the individual neurons that make up this

microcolumn, as seen in Figure 1.3. The visualization of the entities all show different

statistics that are either parameters of that object, or an average of the parameters of

the lower level entities. The parameters are incorporated in the representation using

icons, shapes and diagrams in the visual elements. The visual representations currently

in NeuroScheme are developed specifically to fit the neocortex; for example a column

shows the distribution of neurons on the six layers of the neocortex. To use NeuroScheme

as the visual tool for generating connectivity, new visual elements have to be created for

representing connectivity.

NeuroScheme is written in C++ and the Qt5 application framework. Qt5 enables

cross-platform support and many graphical features needed for a visual tool. The project

is structured with a modular design in mind. All of NeuroScheme’s data structures
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are packed in a domain, allowing for different domains to be developed independently.

The domain can be defined in an XML file that contains entity definitions and their

parameters. This makes extending NeuroScheme to a new domain easier.

NeuroScheme was chosen as the visual environment for this project as it already

supports many of the elements needed and implementation of new visual representations

is simple. The multiscalar aspect of NeuroScheme will also be a useful concept in the

project’s future, when more complex representations are needed.

1.3.5 NeuroML

To transfer the visual ontology to the translator, an XML file is used. Instead of de-

veloping a file format specifically for this purpose, using an already existing file format

ensures that already existing standards are adhered and development cost is kept low.

Supporting NeuroML also opens the possibility of connecting many existing tools to the

translator.

To be suitable for this project, the file format needs to fulfill some requirements. First,

it should be easy to parse the file in various languages. Since the translator is written

in Python, and the visual tool in C++, language-specific file formats such as Python’s

pickle library are ruled out. Second, the file format needs to be human readable. Human

readable file formats make error checking a lot easier, and the file can be inspected or

edited by the user. This requirement excludes bytestream based file formats, which

would have the advantage of smaller file sizes and faster parsing. Third, the scope of

the file format should cover all the elements of a network model, including projections,

populations, and inputs. The first two requirements can be fulfilled by an XML or

JSON structure, as both are human readable and commonly used in many programming

languages. One file format that fulfills all three requirements is NeuroML.

NeuroML is developed by Gleeson et al. [14]. The NeuroML standard is a XML

based formalism that can describe networks at different scales. Furthermore, NeuroML

is simulator independent and is supported by various neuroscience tools. The standard

consists of three levels, which are built hierarchically; Elements that are defined on a

lower level can be used on higher levels.

Level 1 – MorphML This level describes the neuronal morphology using 3D segments.

It’s scope is a single neuron and it’s dendritic structure.

Level 2 – ChannelML On this level, the cell membranes and synapses are defined.

Additionally to the elements in Level 1, it can define a single connection between

two neurons in detail.
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Level 3 – NetworkML The highest level formulates the synaptic connectivity between

neurons using synapse and neuron definitions of the two lower levels. It also defines

the external input to the network.

The three levels of NeuroML provide standards from a single dendritic branch to a whole

network with populations and inputs. Many of the elements that are required for this

project can be found in NeuroML’s third level, NetworkML. NetworkML gives a formalism

for the three main elements: populations, projections, and inputs. Populations describe

a group of neurons in 3D space that share a cell type. The cell type can be defined more

precisely using ChannelML if needed. The neuron group can either be a list of neuron

instances, or an area where a given number of neurons are distributed in. The following

XML structure would define a population with three neuron instances:

<population name="PopulationInstanced" cell_type="CellA">

<instances size="3">

<instance id="0"><location x="0" y="0" z="0"/></instance>

<instance id="1"><location x="50" y="0" z="0"/></instance>

<instance id="2"><location x="100" y="0" z="0"/></instance>

</instances>

</population>

This XML structure would define a population template with 50 neurons that are ran-

domly arranged inside a three-dimensional box:

<population name="PopulationTemplate" cell_type="CellA">

<pop_location>

<random_arrangement population_size="50">

<rectangular_location>

<corner x="0" y="0" z="0"/>

<size width="0.5" height="2.5" depth="2"/>

</rectangular_location>

</random_arrangement>

</pop_location>

</population>

Projections between populations can be defined in a similar way. In the XML attributes

the populations to connect are reference by the populations string identifier. The con-

nectivity of the projection can also be instance based or template based. The following

XML structure shows a template projection with a random connectivity pattern:

<projection name="PopA-PopB" source="PopA" target="PopB">

<connectivity_pattern>

<fixed_probability probability="0.1"/>

</connectivity_pattern>

</projection>
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The patterns that are available for template projections are defined in the NetworkML

standard:

all to all Connects every presynaptic neuron to every postsynaptic neuron (full con-

nectivity).

fixed probability Connects neurons randomly, with every possible connection sampled

using a Bernoulli trial. The parameter probability gives the threshold for the

Bernoulli trial.

per cell connection Every presynaptic neuron is connected to a specified amount of

postsynaptic neurons. The postsynaptic neurons are chosen randomly, and the

number of postsynaptic neurons for every presynaptic neuron is specified by the

parameter num per source. The parameter direction can switch the direction

from Pre-to-Post to Post-to-Pre, where every postsynaptic neuron is connected to

a set amount of presynaptic neurons.

The available connectivity patterns are similar to the elementary masks provided by CSA

(See Section 1.3.1) and cover basic use-cases for network models. When using template

projections, NeuroML does not define the algorithm behind the connectivity patterns,

nor does it provide an implementation. Tools that use NeuroML have to provide their

own implementation, which may result in different connectivity based on the tool.

The NeuroML standard is defined in detail using XML Schema Definition (XSD) files.

While XSD itself is written in XML, it is used to define the structure of an XML file.

An XSD file describes which XML tags and elements are available, what attributes they

support, and what and how many subelements an element can have. This allows XML

files with a complex structure to be validated using the Scheme file, allowing for easier

error detection in a file.

An alternative to NeuroML is NineML, a neuronal modeling language similar to Neu-

roML developed by Raikov et al. [27]. NineML also uses an XML based standard defined

in XSD and focuses on definitions on the network level, making it simpler to use than

NeuroML. NineML files can also be read using a provided Python parser. It also de-

fines projection and population elements, although no input elements. Projections and

populations can also be defined in a template based mode, and NineML provides similar

connectivity pattern definitions to NeuroML. Although NineML shows a lot of similarity

to NeuroML, many lower level elements from NeuroML are not included in NineML, in-

cluding the biological cell structure of the neurons and synapses. While NineML would

also be a suitable candidate for the file format, NeuroML defines more elements that

might be useful in the future of the project. NineML also has a lower adoption rate in
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the neuroscience community, making the project less likely to be compatible with other

programs. For these reasons NeuroML was chosen as the file format for exchanging model

data between the visual tool and the translator.

1.3.6 Visualizations and User Interfaces for Neural Networks

Apart from NeuroScheme (see Section 1.3.4), there have been previous attempts at model

visualization. VisNEST by Nowke et al. [24] provides analysis tools for exploring simu-

lation data in a 3D environment. VisNEST also includes visualizations for connectivity,

but does not provide tools for creating models. The focus in VisNEST is on the spatial

layout of network models in 3D space and the spiking activity in them.

The NEURON simulator has a few different visualization tools. ModelView allows the

user to explore a network through a tree-like data structure, and can display the dendritic

trees of a neuron in 3D space. It does not have tools for exploring the simulated data.

The Network Builder tool for the NEURON simulator allows interactive network creation.

Through the Network Builder, a user can control NEURON’s network creation routines

using a GUI. Individual neurons can be placed into a scene and connected with lines.

The visualization is simple, with neurons represented by a single letter, and connections

being lines between them. Populations and projections are not supported.

Topographica’s GUI focuses on its two-dimensional maps. The GUI can create and

visualize networks during simulation, but is very limited due to the simulator’s specific

area of application. Layers are presented as gray-scale images to show the activity of the

neurons or weight of the connections.

Visualizations like the BrainNet Viewer [30] focus on a topographic representation

of brain regions. In these representations, the brain can be explored in different 3D en-

vironments. The BrainNet Viewer can show the surfaces and volumes of the brain or

display regions as interconnected nodes. Another 3D visualization tool is neuroConstruct

[13]. Instead of just visualizing models, neuroConstruct can be used to create models

in a 3D environment. Complex spatial connectivity patterns can be created and models

can be exported into simulation scripts for various simulators. While a three dimensional

visualization may be helpful for analyzing populations in relation to their biological posi-

tion in the brain, the 3D visualizations can become confusing when viewing complicated

networks. 2D visualizations usually do not try to visualize spatial positions. For exam-

ple, the tools proposed by Nordlie and Plesser [22] specifically target visualizations of

connectivity through the use of connectivity matrices. The matrices are similar to those

described in Section 1.3.1, and can also describe different parameters with color scales.

19



Chapter 2

Design

To solve the problem of translating a visual language, a tool chain of different software

has to be built. This package will be called ViCoGen, short for Visual Connectivity

Generation. In this chapter, the concepts and design for ViCoGen will be introduced.

This includes conducting usability interviews of neuroscience experts, constructing user

stories, and designing the workflow of the ViCoGen package.

2.1 Usability Interviews

To develop a visual tool for neuroscientists that is intuitive to use and displays complex

information, a visual representation of connectivity has to be designed. To achieve this, a

series of usability interviews with neuroscientists and possible users have been conducted.

The participants were four neuroscientists from the INM-6 at the Forschungszentrum

Jülich, and one computational neuroscientist at the Institut für Neuroinformatik at the

Ruhr-Universität Bochum. The chosen participants are active in the field of synaptic

plasticity research, recurrent neural networks, network synchronization, and large scale

visual cortex simulations.

The five interviews were conducted over the span of four weeks and had a length

of 30-40 minutes. The interviews had the following structure: First, the participant

explained their field of work and their current relevant projects they were working on.

The interviewer then explained the current project and how it could relate to their field.

Next, a list of general questions about connectivity and connectivity parameters was

asked, which generally followed these questions:

• Connectivity

– What different types of connectivity are you using?

– How sparse are the connections? / How many are there usually?
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• Parameters

– What parameters are important for your connections? (e.g. synaptic weight,

delay, etc.)

– Which parameters are most important to see at a first glance

– Which parameters are changed most often? / What do you play around with

most often?

– How would you represent these parameters visually?

– Do you use plasticity in your models?

• Spatial Connectivity

– Do you use spatial connectivity?

– Is the spatial connectivity two-dimensional or three-dimensional?

The participants were asked to support some of their answers with drawings and Mock-

Ups. The rest of the time was used as a free-form interview, where participants could

present their ideas about the project. The interviewer also presented Mock-Ups and asked

for the participant’s thoughts about the design.

The interviews were evaluated to find use cases and a common visual representation

of connectivity. Most of the interviewed scientists use either a random connectivity, or a

fixed per-cell connectivity (also called fan in/out or fixed in/outdegree) for their network

models. Sometimes a full connectivity is used, one-to-one connectivity is almost never

used. How many connections and neurons are used was widely different from project to

project. Some used fewer than 100 neurons and connections, while others had connection

counts in the billions. The connectivity percentage of layers was generally below 30%.

Regarding the parameters, most people interviewed agreed that connectivity percentage

and synaptic weight are the most important parameters to see in a network. Connectivity

type is not as important to see, as most models use only one type of connectivity for all

connections. Since they rarely differ in a single model, it is not important to visualize

the connectivity for every connection.

When asked how to visualize a connection between two populations, all of the par-

ticipants used a form of arrow to connect two populations. One participant preferred to

draw individual neurons of a population that were then connected individually with lines,

as the spatial representation of the neurons was more important to him. The direction

of the arrow always pointed from the presynaptic neurons to the postsynaptic neurons.

While an arrow tip was the usual indicator for excitatory connections, inhibitory connec-

tions were often indicated by a circle at the end of the line. Many participants agreed
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Figure 2.1: The problem of connectivity percentage visualization illustrated in two examples. A
small neuron population is connected to a small and a large neuron population with a random
connectivity of 20%. On the left the thickness of the arrow represents the percentage of possible
connections. Even though the connection between the small and the large population has
more absolute connections, the arrow is the same size as the connection between the two small
populations. On the right, the thickness is determined by the indegree of the connection. Here
the arrow is intuitively larger for the small-to-large connection.

that the thickness of the line and the size of the arrow tip of an arrow representing a

connection should be influenced by the synaptic weight and the connectivity of the pro-

jection. One approach to defining connectivity would be to calculate the percentage of

actual connections to maximum possible connections. One participant concluded that

the connectivity percentage would not be an intuitive representation of the number of

connections, as it would not take neuron population size into consideration. Figure 2.1

illustrates this problem. The solution the participant suggested was calculating the in-

degree of a connection. The indegree is the product of the sparsity of the connection and

the number of neurons in the target population. The connectivity visualization using

indegree is further explained in Section 2.2.

When asked about spatial connectivity, the answers varied. Some of the interviewed

scientists do not use spatial connectivity at all, while others used two- and three-dimensional

spatial connectivity. Plasticity and synaptic mechanisms were also topics with multiple

answers. Both synapse models and plasticity have highly varying parameter sets depend-

ing on the used model. Finding and implementing a visualization that encompasses all

models and parameter spaces would be futile work, as many mechanisms do not share

common parameters.

One feature that was requested by multiple participants in the free-form part of the

interview was a display of connectivity in the form of a connectivity matrix. Many

researchers use connectivity matrices as a way to display all connectivity data in a complex
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model with a high number of populations. This feature would be an alternative to the

more intuitive display, mainly to be used when the model becomes too complicated to be

viewed with arrow connections.

Based on the analysis of the interviews, a design for the visual elements has been

drafted in Section 2.2.

2.2 GUI and Visual Language Design

Based on the usability interviews, a set of requirements for the visual language was

compiled:

V1: Projection source and target. The source and target of a projection should al-

ways be clear. It should also be easy to see which projections are connected to a

population in a complex model.

V2: Inhibitory and excitatory. It should always be clear to see if a projection has

a positive synaptic weight (excitatory connections), or a negative synaptic weight

(inhibitory connections).

V3: Connectivity. The connectivity of a projection should always be visible. This

connectivity should represent the indegree of a projection towards a population.

V4: Synaptic weight. The strength of the synapse should be visible for all projec-

tions. If a projection’s synaptic strength is drawn from a distribution for all its

connections, the mean of that distribution should be visible.

V5: Delay. The delay of a projection does not usually differ in a model, so the delay

does not need to be visible directly.

V6: Connection Pattern. The connection pattern of a projection is usually the same

for all projections in a model and does not need to be always visible.

The resulting visual language derived from the requirements was developed in close col-

laboration with the GMRV in Madrid, as their team would be implementing the visual-

ization.

Displaying a projection with a clear source and target population (V1) can be done

with an arrow pointing from the source to the target (Fig. 2.2a). The arrow points

towards the target population of the projection, indicating the direction of spikes in

the connections. The arrow representation was unanimously used during the usability

interviews, making it the most intuitive representation. Nowke et al. [24] also use arrows
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(a) Projection with excitatory connections, rep-
resented by a triangular arrow tip.

(b) Projections with inhibitory connections,
represented by a circular arrow tip.

(c) Projection with low connectivity. The size
of the arrow tip decreases with lower indegree.

(d) Projection with high synaptic strength. The
thickness of the line increases with the synaptic
strength.

(e) Fully connected network with 3 populations.
The left population is highlighted, showing in-
coming projections in orange and outgoing pro-
jections in blue.

Figure 2.2: Examples of the visual language for connectivity. Neuron populations are displayed
as blue hexagons, similar to NeuroSchemes columns.
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in their 3D visualization of connectivity in VisNEST. Additionally, the start of the arrow is

decorated with a small perpendicular bar, which makes it easier to differentiate the source

population. To allow seeing at a quick glance which projections belong to a population,

incoming projections should be highlighted in orange, and outgoing projections in blue

(Fig. 2.2e).

Differentiating between inhibitory and excitatory connections (V2) can be done through

the shape of the arrow tip. Normal arrow tips are used for excitatory connections, and

circles for inhibitory connections. This is the representation used in Potjans and Dies-

mann [26, Fig. 1], and was also suggested during the interview process. Fig. 2.2a and

Fig. 2.2b show the difference between excitatory and inhibitory projections.

The connectivity of a projection (V3), calculated as the indegree of the target pop-

ulation, is represented by the size of the arrow tip (Fig. 2.2c). As stated in Section 2.1,

the indegree of a projection shows the amount of target neurons a projection connects to.

This allows the user to see how sparse a connection is in relation to the number of target

neurons. Since the indegree is dependent on the number of neurons, the size of the arrow

tip should be scaled logarithmically to the indegree. Logarithmic scaling would allow

comparisons between projections targeting small populations and projections targeting

large populations. To avoid the size of the arrow tip to become too large, all arrow tip

sizes should be relative to the largest indegree in the model.

The synaptic weight of a connection V4 is displayed using the thickness of the line

(Fig. 2.2d). Connections with a high synaptic weight have a higher influence on the

target neurons, and are thus represented by a thicker line. Since inhibitory connections

have a negative weight, the absolute weight is used for the calculation. The weight of

a connection is usually bound to a maximum value gmax by the synapse model. Values

greater than the maximum are mathematically possible, but their strength would not

be physiologically correct. Thus, the width of the line can be mapped linearly from the

interval [0, gmax]. When the synaptic weight is given as a distribution, the average of the

distribution should be used for calculation in the visual representation.

The color of the projection is intentionally not used for a specific parameter. Instead,

it can be used to optionally display any generic parameter that may be a part of the

synapse model or a measurement. Numerical parameters can be displayed as a color

gradient, and multiple choice parameters as a random color according to a legend. Since

visualizing the delay (V5) and the connectivity pattern (V6) is not as important, they

should be handled like generic parameters.

Section 4.3.1 shows how the GUI design has been implemented so far in NeuroScheme.
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Figure 2.3: A Mock-Up design of the ViCoGen GUI. In the middle of the screen is the current
scene, which contains the visual representations in a 2D space. The neuron populations, repre-
sented by hexagons, are grouped into layers and connected between each other with projections.
On the left is a toolbar with access to tools for selecting and creating populations, and drawing
new projections. On the top right is an outline which shows the populations and projections in
the scene in a tree structure. Below that is the population properties panel, where population
settings can be adjusted. Similarly, below the population properties is also a panel for setting
projection properties.

2.3 User Workflow

To ensure an intuitive user experience, the GUI has to be designed with the target

user base in mind. ViCoGen is made to be used by neuroscientists and students of

neuroscience; no programming experience should be needed to use the visual tool. This

section will introduce a number of user stories on how the visual tool can be used to create

new models. The user stories are based on the Mock-Up design shown in Figure 2.3.

When the user starts the tool, he is presented with an empty scene. On the left is a

selection bar for tools: Select, Create Population, Create Neuron, Create Connection. In

the center is the current scene, which shows created elements in their visualizations. On

the top right is an outline of all the created elements in the scene for quick selection and

inspecting the hierarchy. The bottom two panels on the right show the properties of the

currently selected population and connection. Created populations can be placed freely

in the scene. Positions of the population elements do not infer the spatial positions of

the neurons in the population.

The following user stories represent the basic usage of the tool and include creating

and simulating models, modifying existing models, and searching elements in a model:
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U1: Create neuron population. The user wants to create a new population from an

empty scene. He either selects the population creation tool from the left toolbar

and clicks into the empty scene, or right clicks the empty scene and selects the

option for creating a new population from the context menu. The new population

is selected after creation and the user can adjust parameters, e.g. number of neurons

or the neuron model, in the panel on the right. The default parameters of the new

population are copied from the last population that was created, making it easier

to create multiple similar populations.

U2: Connect two populations. The user wants to create a new projection between

two existing populations. He selects the connection tool in the left toolbar, and

drags a new projection from the source population to the target population. Similar

to the population creation, the new projection is selected and the parameters can

be adjusted on the right. The parameters change the visualization of the projection

in the scene, as described in Section 2.2.

U3: Edit/Delete a projection The user wants to change the parameters of a projec-

tion or delete the projection entirely. He switches to the selection tool and clicks

on the projection. The projection is highlighted and its parameters appear in the

panel on the right. He can now change the parameters of the projection, or delete

it with a button in the parameter panel or by pressing the Del key.

U4: Connect input to a population. The user wants to connect an input generator

to a neuron population. He selects the Input tool from the left toolbar and clicks

into the empty scene to create a new input. In the properties panel on the right he

can adjust the type and parameters of the input. He then connects the input to a

population using the connection tool. The type of connection that can be selected

may be limited by the source input’s type.

U5: Search for a specific population. The user is working on a model with a large

amount of populations and wants to adjust the parameters of a specific population.

He uses the search function in the outline panel on the top right to type in the name

of the population. The outline is filtered to show the populations that match the

search terms. The user can select the population by clicking on it in the outline, or

focus on the population in the scene by double clicking.

U6: Change synapse parameters of all outgoing projections of a populations.

The user wants to adjust the parameters of all outgoing projections of a population.

He selects the population, which highlights every incoming and outgoing projection.
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He can now select multiple projections by control clicking in the scene. Alterna-

tively, the selected population is also selected in the outline. When expanding the

population in the outline, it shows links to all ingoing and outgoing projections.

The user can select the category for outgoing projections to select all at once. The

parameter panel on the right can now be used to adjust the properties of all selected

projections.

U7: Change the connectivity method of all connections. The user wants to change

the connectivity method of all existing connections. He uses the command Ctrl+A

to select everything in the model. He selects the projection properties panel on the

right and changes the connectivity method. Some parameters may be converted

between the connectivity methods, but the user will have to edit each connection’s

parameters individually for other connectivity methods.

U8: Grouping populations. The user is working on a complex model and wants to

group some populations into layers for better overview. He selects three layers

using control click and groups them together using either the right click context

menu or by using the Ctrl+G shortcut. The population group is indicated by a

gray rectangle encompassing the populations. The group can be moved similarly

to other elements, with populations in the group moving with it.

U9: Entering multiple parameters. The user wants to implement an existing model

that is defined in a paper. The model has a high amount of projections, so connect-

ing the populations by hand is time-consuming. Instead, the user switches into the

connection matrix view, where parameters are ordered into a matrix. The columns

of the matrix lists the outgoing projections of a population, while the rows shows all

incoming projections. The user selects the connectivity percentage parameter from

a list and can now enter the parameters similar to a spreadsheet. The individual

cells of the matrix can also be highlighted in a color grade linked to the parameter

value.

U10: Simulate the model. The user has finished designing his model and wants to

simulate it using NEST. He selects the Simulate option from the menu bar, which

opens the simulation dialog. In the dialog the user selects the NEST simulator as

a target simulator, which also gives him a list of parameters specific to NEST. He

selects the simulation time, the number of threads, the output target, etc. in the

dialog and then clicks the Simulate button to start the simulation.

Section 4.3.1 shows how far the implementation of the visual tool by the GMRV is.
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2.4 Technical Requirements

At the backend of ViCoGen stands the translator. Its purpose is to translate the models

created in the visual representation into a simulation specific language. The translation

system should support the following technical requirements:

T1: The system should be able to simulate a model provided by the GUI in a simulator.

T2: The simulation should be able to be performed in different simulators and adding

support for a new simulator should require a low development cost.

T3: The system should be separated of the GUI.

T4: The overhead of the system should be low. Performance should be close to that of

using the simulator directly.

T5: Calculation on distributed systems should be supported.

The requirement T1 is the main task of the translator, and should be considered the

critical requirement. Requirements T2 and T3 are important for ensuring the modularity

of the system. T2 would allow simulators to be used as modules for the backend. T3 in

turn makes the frontend exchangeable. T4 and T5 exist to ensure the performance of the

system. How the technical requirements are solved can be found in Chapter 3.
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Chapter 3

Implementation

This chapter will explain how the requirements gathered in Chapter 2 are implemented,

how the technology is applied, and how each part of the project can be used.

After a user has created a model in the visual tool, he can start simulating it. For

this, the model is parsed through the backend of ViCoGen to a simulator. Figure 3.1

shows the flow of data from the visual tool to the simulator, and how the modules split

into frontend and backend.

The backend of ViCoGen is designed to be separate from the GUI, as described in

T3. This separation allowing the frontend and backend to be used independently as

modules. The frontend can for example run on a desktop computer, while the more

performance costly backend runs on a high performance computing system. This design

principle of modular design also allows for single parts to be rewritten or switched out

easily. New parts can be developed independently by external teams, and developers

only need knowledge about the part they are working on, decreasing the time it takes to

introduce a new developer to the project. Developers are also able to work on the project

simultaneously on different modules without affecting others. Parallel development is

especially important in this project, as the ViCoGen frontend is developed in parallel by

the GMRV in Madrid. Disadvantages of a modular design are the added overhead to

development and the increased complexity of data transfer. Since the project involves

multiple individual teams and future development is likely to be carried out by different

master’s students, a modular design has been chosen for the project. Using the modular

design principle requires careful construction of interfaces and data exchange points.

The main data exchange point between the frontend and the backend is done through

NeuroML. The visual tool exports its visual data into a NeuroML file, and passes the file

along to the translator. When the GUI is running on the same system as the backend,

the GUI can start the translation process immediately. The NeuroML file can also be
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Figure 3.1: Flow of data from NeuroScheme to the simulator. The user creates a model in
NeuroScheme and exports it as a NeuroML file. In the backend, the translator parses the
NeuroML file, and converts the connectivity into the Connection Set Algebra. The populations
and inputs are built directly in the simulator. With the CGI, connections are generated from the
connection generation library and passed to the simulator. The simulator starts the simulation,
and the results can be processed and passed back to NeuroScheme.
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saved and then translated on a different system, making the frontend completely separate

of the backend.

The main part of the ViCoGen backend is the translator. The translator parses

NeuroML files that are generated by the frontend, as described in T1. To pass the model

data to the simulator, the translator uses CSA and the Connection Generation Interface

to translate the connectivity. With the CGI, the link between translator and simulator

also becomes modular.

3.1 Extending NetworkML

For this project, NeuroML version 1.8.2 was used, with a version 2.0 currently in devel-

opment. Version 2.0 does not change much on the NetworkML layer, but uses the LEMS

XML language as a framework for defining elements [5]. As NeuroML 2.0 is still in

development, ViCoGen uses NeuroML 1.8.2 as a standard. To support all visual require-

ments defined in Section 2.2, the NeuroML file format had to be extended, specifically

NetworkML. These extensions are entirely optional and files of the original NeuroML

standard can still be parsed. The XSD-Scheme file can be used to check a NeuroML file

for validity using external programs. The NeuroML file is not checked for validity by the

translator, as the NeuroML files are not supposed to be written by hand but returned

from other parts of the project. Instead, the validity of the file should be checked by the

parts that create the file. The translator may be able to parse malformed NeuroML files,

but no guarantee is given. The following sections describe the changes and additions

made to the NeuroML specification.

3.1.1 One-To-One Connectivity

Of the common elementary connectivity patterns, NeuroML is missing the One-To-One

connectivity. Since a one-to-one connection does not need any parameters, adding it to

the XSD Scheme is trivial:

<xs:element name="one_to_one">

<xs:complexType/>

</xs:element>

While the One-to-One connectivity may not be common for biological networks, it is

important for connecting inputs and recording devices.
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3.1.2 Input Sites

In NeuroML, an input is connected to a population by defining an input site. The sites

function the same way as projections, as they can connect an input to a population using

either a connectivity pattern or connection instances. Since using an input site is the same

as connecting an input through a projection, this creates an unnecessary redundancy in

the file structure. New connectivity patterns would have to be created for projections as

well as for inputs. To avoid the redundancy and additional workload, input sites are not

supported by the parser. Instead, inputs are connected the same way two populations

would be connected: With a projection where the source is interpreted as a population

with size 1. This makes the file format easier to maintain and expand, and also simplifies

the parser.

3.1.3 Spatial Connectivity

Of the interviewed scientists, almost half said they use spatial connectivity in their mod-

els. The most common variant of spatial connectivity is Gaussian spatial connectivity

(Fig. 3.2). To support this, two new XML structures for Gaussian spatial connectivity in

2D and 3D have been added to the NeuroML file format.

<xs:element name="gaussian_connectivity_2d">

<xs:complexType>

<xs:attribute name="sigma" type="xs:decimal"/>

<xs:attribute name="cutoff" type="meta:NonNegativeDouble"/>

</xs:complexType>

</xs:element>

<xs:element name="gaussian_connectivity_3d">

<xs:complexType>

<xs:attribute name="sigma" type="xs:decimal"/>

<xs:attribute name="cutoff" type="meta:NonNegativeDouble"/>

</xs:complexType>

</xs:element>

Both XML elements have the parameters sigma and cutoff. The sigma parameter con-

trols the size of the Gaussian that is used for calculating the probability of a connection.

The cutoff parameter can be used to set the maximum distance a point can have to

the center of the Gaussian. With this addition to the XML structure, a Gaussian spatial

connectivity can now be given as follows:

<connectivity_pattern>

<gaussian_connectivity_2d sigma="1.5" cutoff="3"/>

</connectivity_pattern>
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Figure 3.2: Gaussian spatial connectivity on two 2D-Layers. The neuron to connect from the
source layer gets projected onto the target layer using an arbitrary mapping function (blue
dots). The distance metric from CSA (See section 1.3.1) gets applied to a Gaussian sampler
(red circle), resulting in Gaussian local connectivity (red dots).

The positions of the neurons can already be defined in NeuroML by either giving a position

element to all neuron instances, or by adding a <pop location> element to a template

based population. The neuron locations in NeuroML are always three dimensional. When

using 2D spatial connectivity, the value for the z dimension is ignored.

Adding these two structures provides simple spatial connectivity for 2D and 3D pop-

ulations, but more advanced forms of spatial connectivity are still missing. Additional

features may be scaling and translating of neuron positions, or even generic projection

functions. Generic projection functions are supported in CSA, but have no equivalent in

NeuroML.

3.1.4 Distributed Synaptic Parameters

When describing connectivity parameters, e.g. synaptic weight or delay, NeuroML only

provides static values. Only instanced connections can have individual parameter values.

For connectivity patterns though, NeuroML provides no way of giving each connection

in the connectivity pattern a different value. All connections in the connection pattern

share the same static value for their parameters. A solution to this is using distribu-

tions for parameters. To accomplish this, a new DistributedProperty complex type has

been added to the XSD Scheme. A distributed property can hold one of the defined

distributions: GaussianDistribution and UniformDistribution.

<xs:complexType name="DistributedProperty">

<xs:choice>

<xs:element name="GaussianDistribution" type="GaussianDistribution"/>

<xs:element name="UniformDistribution" type="UniformDistribution"/>

</xs:choice>
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</xs:complexType>

<xs:complexType name="GaussianDistribution">

<xs:attribute name="center" type="xs:decimal" use="required"/>

<xs:attribute name="deviation" type="xs:decimal" use="required"/>

</xs:complexType>

<xs:complexType name="UniformDistribution">

<xs:attribute name="lower" type="xs:decimal" use="required"/>

<xs:attribute name="upper" type="xs:decimal" use="required"/>

</xs:complexType>

A distributed property can be defined inside a synapse props block of a projection. So

far, only weight and delay are supported, as the CGI implementation in the libneurosim

package only supports weight and delay parameter for now.

<xs:all minOccurs="0">

<xs:element name="weight" type="DistributedProperty"/>

<xs:element name="delay" type="DistributedProperty"/>

</xs:all>

The Gaussian distribution defines a center and a deviation, which correspond to µ and

σ of a Gaussian. The uniform distribution has an upper and lower bound and gives an

even probability for every value between these bounds. Adding a new distribution can

be done in XSD by adding it to the DistributedProperty complex type. New types of

distributed parameters can be added in the SynapseInternalProperties complex type

as a DistributedProperty. An example for distributed parameters as child elements in

a NeuroML file can be seen here:

<synapse_props synapse_type="StaticSynapse" threshold="-20">

<weight>

<GaussianDistribution center="87.8" deviation="8.8"/>

</weight>

<internal_delay>

<UniformDistribution lower="0.5" upper="1.5"/>

</internal_delay>

</synapse_props>

The distributed properties are entirely optional and synapse properties can still be defined

as an attribute of <synapse props> instead of a child element. Alternatively, a static value

may also be given as a child element of synapse props for weight and delay, making it a

possible replacement for the old way of writing parameters. It would have been possible to

encode the distributed parameters in the string attributes of the synapse props element,

which would have required no changes to the XSD, but this would also make it impossible

to check the validity of the elements using XSD. Additionally, encoding distributions as
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a string would introduce a structural inconsistency to the NeuroML format which would

make it difficult for parsers to correctly parse the NeuroML files.

These NeuroML extensions were necessary as NeuroML’s connectivity definitions for

large networks is limited. Dynamically creating connectivity patterns similar to CSA

is not possible in NeuroML, and distributed properties are not supported. The only

way to recreate spatial connectivity or distributed synapse parameters is by computing

the patterns or distributions before writing the NeuroML file, and using NeuroML’s

connection instances instead. This would, especially for large networks, increase the file

size of the NeuroML files dramatically. NineML does inherit these problems, although it

does support distributed parameters.

3.2 Translation

To transfer the model information into a neuronal simulator, a translator is needed. This

translator connects the visual tool with the simulator by using the Connection Generation

Interface, CSA and the NeuroML file format. As seen in Figure 3.1, the translator parses

NeuroML files, translates the connectivity of the model into CSA structures, and then

passes the connectivity through the CGI to the simulator. The translator reads the

information from the model file or gets called by NeuroScheme directly. Writing the

translator was the main programming challenge of the project. As a target language,

Python version 2.7 was chosen, as the NEST and CSA interfaces are also written in

Python. The modules have also been made Python 3.6 compatible.

3.2.1 Python Module Structure

All of the python files are contained in a package named vicogen. The NeuroML files

are handled in the neuroml subpackage. The modules in the neuroml package are for

holding the data structures of the translation and parsing NeuroML files. The module

parsing.py contains all the functions for parsing NeuroML files into the data structures.

The vicogen package itself contains a few different modules:

• vicogen.py contains functions for accessing the file parsing from the neuroml pack-

age, starting simulations with NEST and printing connectivity matrices and lists

to the console or to file. All of the functions in this module are made available on

a package level.

• nest.py is the module responsible for connecting the translator to the simula-

tor NEST. It provides functions for translating populations and calling the CGI-

Functions for NEST, and also starting simulations.
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• main .py is a required file for using the package by itself on a command line. It

allows the package to be called like a module using python -m vicogen PARAMETERS.

• commands.py provides the command arguments that can be used when calling the

module from a command line.

• init .py is called when vicogen is imported as a python package. It gathers all

the functions from the other modules and provides them on a package level.

The vicogen package can be used either as a normal python package using import

vicogen or executed as a python file with command lines for quick access (See sup-

plementary material in Section 6.3).

Coupling

The modular nature of the translator allows for extensibility and reuse of the different

parts in the translator. The modules in the vicogen package are written to ensure a low

coupling between each other. For example, new simulators can be added easily as all

references to NEST are contained in the nest.py module.

The modules in the neuroml package do not have a very low coupling, as the data

structures have to be interconnected to function properly. Instead, the modules are

parted into semantic groups to ensure readability. Still, the neuroml package can be used

independently as it does not depend on any part of the vicogen package. The neuroml

package can therefore be used in other projects for parsing NeuroML files.

3.2.2 Class Structure

To represent NeuroML in Python in a way that is extensible and maintainable, the class

structure makes use of inheritance and “duck typing”. For example, all connectivity

pattern classes are subclasses of the ConnectivityPattern class, which has an empty

function mask() that all subclasses have to implement (See Section 3.2.4). This makes it

easier for developers to see which functions they need to implement to add a new pattern.

Fig. 3.3 shows a class diagram of all the classes represented in the neuroml package. All

connectivity patterns are subclasses of ConnectivityPattern and Projection. Adding a

new connectivity pattern can be done by creating a new subclass of ConnectivityPattern

and assigning a CSA mask to self. mask in the init method. Similarly, new sub-

classes can be created to add new distributions, neuron position functions, and inputs.
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NetworkML tag Python class CSA structure

<all to all/> AllToAll csa.full
<one to one/> OneToOne csa.oneToOne
<fixed probability/> FixedProbability csa.random(p)
<per cell connection/> PerCell csa.random(fanIn=n)
<gaussian connectivity 2d/> GaussianSpatialConnectivity gaussian(sigma, cutoff)

Table 3.1: XML connectivity pattern tags and their corresponding Python classes and
CSA structures. The Gaussian spatial connectivity has to be combined with CSA’s
random operator, which samples from the distribution.

3.2.3 XML Parsing

The NeuroML file is first read using the xml.etree module of the Python standard

library. xml.etree is a standard python module for reading, modifying and writing XML

files. Parsing an XML file with the module results in an ElementTree object, which

can be traversed in a tree-like fashion. For increased speed, xml.etree provides a C

implementation of ElementTree called cElementTree.

The module vicogen.neuroml.parsing then handles the parsing of NeuroML files

for translation. There exists a parsing function for every XML tag that is defined by

NeuroML. Most XML tags correspond to a Python class, as shown in Table 3.1. The

parser first starts reading the populations, then the projections, and lastly the inputs.

After the model has been parsed successfully, all string references between objects are

replaced with object pointers. This allows later stages in the translation to easily follow

the source and target of a projection.

The parser ignores tags it does not know, but if a known tag has wrong attributes or

a tag is missing a required child tag, the parser throws a NetworkMLParsingError. This

Python exception describes what went wrong and shows the offending XML block.

3.2.4 CSA Integration

To integrate the Connection Set Algebra into the class structure, the ConnectivityPattern

class has a function mask() which returns a csa.Mask object. When mask() is not over-

ridden by a subclass, it returns the class’ self. mask attribute, which can be set by a

subclass in the constructor. The translation process is a mapping of NeuroML tags to

CSA objects. Table 3.1 shows the NeuroML representations and their assigned mask that

defines the respective connectivity pattern.

The spatial connectivity can also be realized using CSA methods, but the transla-

tion process is more complex. For the distance metric the neuron positions have to be

processed by the algebra. The neuron positions are either given by the neuron instance
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elements in the NeuroML file, or by the position templates. If the positions are given by

a template, the neuron positions are first sampled from the template’s distribution. With

the positions, a distance metric between the source and target neurons can be created.

pos_src = self.source.neuron_positions

pos_tar = self.target.neuron_positions

distance_metric = csa.euclidMetric2d(pos_src, pos_tar)

The distance metric is then combined with a Gaussian sampler. In the Python imple-

mentation of CSA, this is done by using the overloaded multiplication operator.

gaussian_metric = csa.gaussian(sigma, cutoff) * distance_metric

The Gaussian metric is then combined with a random operator. Note that in the Python

implementation, csa.random can mean either a random mask, or a random operator, de-

pending on the context. The random operator samples connections with the probabilities

given by its other operand.

return csa.random * gaussian_metric

Value Sets

To transfer the synapse parameters such as synaptic weight and delay to the simulator, the

parameters have to be expressed as value sets. Every projection has a set of parameters

associated with them that have to be translated. A projection’s parameter values are

stored inside a SynapseProperties object. Since the Connection Generation Interface

implementation in the libneurosim package only supports the synaptic properties delay

and weight, only these two are implemented in SynapseProperties. When the simulator

calls the connection generation library, the connection set is created from the connectivity

pattern mask and the value set. The cset() function of Projection gathers the weight

and delay parameters from the SynapseProperties object and creates a value set of them.

This value set is combined with the mask to form a connection set. The connection set

is then returned by the function, ready to be passed through the Connection Generation

Interface.

If the connection is a connectivity pattern, the synapse properties may consist of

distributed parameters instead of static parameters. Each distributed parameter needs a

value set that represents the distribution. The Distribution class and its subclasses (so

far only UniformDistribution and GaussianDistribution) provide implementations of

the distributions added to NeuroML in Section 3.1.4. At runtime, the function vset() of

the Distribution class creates a value set with a lambda function. This lambda function

samples the distribution and is later called by the CGI.
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3.2.5 Simulator Linking

The computational intensive part of the toolchain is the connection generation and sim-

ulation of the model. As a first proof of concept the NEST simulator is used because

of its Python bindings and support for the CGI through the libneurosim package (See

Section 1.3.2). While connectivity is managed in a simulator independent way, popu-

lations and inputs are not simulator independent. To be able to pass population and

input information to the simulator, the nest .py module provides functions to generate

NEST populations out of a Population object. Inputs are handled in a similar way. This

circumvents the need for a simulator independent interface for generating populations

and input.

The libneurosim package provides the function CGConnect() to connect NEST pop-

ulations using connection sets. The CGConnect function is also responsible for mapping

the value sets to synapse parameters in NEST. Together with the two NEST populations

and the connection set, the function also requires a Python dictionary that maps a string

identifier of a parameter to the index of the corresponding value set. The translator only

supports weight and delay as synapse parameters, as the libneurosim implementation

of the connection generation interface only passes value sets with arity 0 or 2 to the

simulator. For every projection, the translator calls:

nest.CGConnect(

source_ids, # The neuron IDs of the source population

target_ids, # The neuron IDs of the target population

cset, # The connection set (with value set of arity 2)

{

’weight’: 0, # The weight is stored in the first value set

’delay’: 1 # The delay is stored in the second value set

})

This function queries all the connections that can be expressed by the connection set and

connects the respective neurons in NEST.

To test the performance overhead of CGConnect, an alternative method was tested for

performance: Instead of calling CGConnect for every projection, a single CSA mask was

compiled of all projections and passed to the simulator. The single mask was created

by converting neuron IDs to global IDs, and using the union operator to combine the

individual masks. This method of generating connectivity showed a significant decrease in

performance, due to the overhead the union operators add to the connectivity generation

process. Keeping the masks simple is therefore more important than reducing the amount

of CGConnect calls.

41



3.3 Extending libcsa

The C++ implementation of CSA offers increased performance over the Python imple-

mentation when generating connectivity. The libcsa library only supports a limited

implementation of CSA, with only some elementary masks available. Masks can not be

combined through set algebra in libcsa, and spatial connectivity is not available. Since

the fan in and fan out connectivity that is part of NeuroML was not implemented in

libcsa, the two missing connectivity patterns have been implemented.

3.4 Unit Tests

To make sure that the translator is working as intended during active development, unit

testing has been implemented for the project. Unit tests allow for code validation and

maintenance by automatically executing tests on the functionality of the code base. The

tests can be run by executing python python unittest runner.py in the test directory.

All unit tests have been implemented using the Python framework unittest, which

provides automated testing and testing functions. The tests are divided into three cate-

gories: NeuroML parsing, CSA translation, and NEST integration. The parsing test suite

parses a set of predefined models form NeuroML and checks if the translator’s internal ob-

ject representation matches the model description. The test suite includes many different

models, such as spatial models, models with parameter distributions and larger models.

Testing the parser functions ensures that model information is not lost during the parsing

process, and that the NeuroML standard is still supported. The CSA translation tests

assure that the connectivity generated by CSA through the translator’s functions are

correct. When started, the test suite creates objects from the internal representation of

NeuroML and translates them to CSA. All connectivity modes available in NeuroML are

checked this way. Returned CSA objects are evaluated and checked against an existing

connectivity matrix. The NEST integration tests ensure that CSA can properly commu-

nicate with NEST through the connection generation interface and that connectivity is

generated correctly. Also tested are the functions for generating populations and inputs

in NEST.
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Chapter 4

Analysis

This chapter will present an analysis of the developed tools and visualizations, and if

they meet the specified requirements.

4.1 Technical Analysis

Section 2.4 has introduced technical requirements for the translator. The developed

translator is able to simulate a network from a NeuroML file, which fulfills the requirement

T1. Furthermore, the translator is able to convert the connectivity of the model into the

mathematical language of the Connection Set Algebra, and simulate the model using

the Connection Generation Interface and the NEST simulator. Since the backend is

written in Python, has a modular design, and uses the Connection Generation Interface,

adding support for a new simulator (T2) is straight forward. As long as the simulator

supports CGI, the simulator can be added to the translator by implementing the creation

of populations and inputs, and the simulation control. The separation of frontend and

backend (T3) has been fulfilled completely by using NeuroML files as an exchange point.

The proposed additions to NetworkML (3.1) are necessary to use the translator to its full

extend, although using standard NeuroML is still valid.

4.2 Performance

To ensure a performant scaling of the system with more workload and more data, the com-

plexity of the algorithms used need to be scalable. Especially at the critical paths of the

translation the efficiency of the code is important. Possible critical paths of the systems

are the parsing of the NeuroML files, the translation and the connectivity generation.

Parsing the NeuroML files is bound by the speed of the XML parser. The best

performance for parsing could be attained when using the C implementation provided
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by the xml.etree Python module. The parsing functions all run in linear time as every

object has to be parsed just once. The only part of the parsing process that does not

run in linear time is the linking of projections to their populations. As the populations

are identified by string in the XML, the two population objects with the correct string

IDs have to be searched for every projection. For this the populations are saved in a

Python dictionary for faster access by string. Theoretically, the population mapping has

a time complexity of O(npopnproj), where n is the number of populations or projections.

Practically, since the number of projections and populations is usually low, the parsing

has a very low impact on performance.

The translation is a simple mapping of NeuroML objects to CSA. When the connection

generation is started, the translator creates the CSA objects for every projection. Since

this is just the pattern and parameter definition, the performance of the translation is

negligible.

The highest performance impact is the connectivity generation, which is bottlenecked

by the connection generation library in use. When building the model with the simulator

through the Connection Generation Interface, the connection generation library has to

produce the actual neuron connections from connectivity patterns. Depending on the

size of the network and the system hardware, the process may be very time consuming.

The Python implementation of CSA is approximately 3.5 times slower than the C++

implementation, as shown in Figure 4.1. The performance of the C++ implementation

is close to that of using NEST directly, proving that connectivity generation through the

CGI with a minimal overhead is possible. Nevertheless, the algorithms of libcsa can

be improved upon, as seen in the random connectivity generation in Figure 4.1. Since

currently only the Python implementation of CSA can be used for translating a complete

model, the technical requirement of performance (T4) was not met. Using libcsa as the

connection generation library would increase performance drastically.

Usage on high performance computers is possible for the connection generation. CSA

supports parallel execution through MPI. Since the connection generation is the bottle-

neck of the ViCoGen backend, parallel execution of the parsing and translation process

is not needed. libcsa does not support parallel execution yet, but once it is fully imple-

mented the technical requirement for parallelization (T5) can be considered as fulfilled.

4.2.1 Complexity Analysis

The algorithms used in CSA generally run in linear time, scaling with the amount of con-

nections generated. The only algorithms running slower than linear time are the spatial

connectivity masks. All algorithms for distributing neurons in space have to include an

inverse function that finds the closest neuron to a point. This function is used during
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Figure 4.1: Connection generation performance for random connectivity (left) and one-to-one
connectivity (right). Generation times were measured for the Python implementation (csa),
the C++ implementation (libcsa), and generating connections directly in NEST. The compu-
tation is single threaded as the C++ implementation does not support multithreading. The
Python implementation is about 3.5 times slower than using NEST directly. Using the C++
implementation shows some overhead, more noticeable when generating random connectivity.
libcsa is generally 25% slower when generating random connectivity, and about 5% slower
when generating one-to-one connectivity.

connection generation for spatial connectivity. The two- and three-dimensional random

distributions implement the inverse search by iterating through every postsynaptic neuron

for every presynaptic neuron to find the smallest distance. This results in a complexity of

O(n2). A quadratic runtime can slow down the connectivity generation significantly. The

performance of the inverse function could be improved by using a KD-Tree [10], which

allows searching in a spatial structure in logarithmic time. Using a KD-Tree would make

the complexity of the spatial connectivity O(n log n). A KD-Tree implementation for

CSA was tested and a significant speedup was discovered for neuron populations greater

than 10,000 neurons. For this, the KD-Tree implementation in the SciPy package [19]

was used.

4.3 Usability Analysis

4.3.1 NeuroScheme Implementation

To fulfill the requirements for the GUI implementation, the team of the GMRV have

worked on implementing the requirements for the GUI. They focused on the visual ele-

ments needed for displaying populations and projections, and implemented basic interac-

tivity for all elements. For this, they have created a new domain in NeuroScheme, named

congen. The congen domain allows users to visually design network models, with focus

on the connectivity of the model. This section will examine the NeuroScheme congen

domain and how the user stories from Section 3.1 have been implemented.
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Figure 4.2: NeuroScheme’s representation of connectivity as it is implemented so far. Popu-
lations are displayed by Hexagons, with a red bar indicating the relative population size nor-
malized over all populations. The projection is visualized by an arrow connecting the two
populations. The arrow’s source is indicated by a bar. So far, arrow tip size representing the
indegree has not been implemented. Future versions should look similar to Figure 2.2.

The visual language proposed in Section 2.2 has been mostly implemented. Popula-

tions are represented by a hexagonal shape with an indicator bar that shows the relative

number of neurons in relation to other populations. The color of the hexagon relates to

the neuron model used in the population. Projections are represented as arrows, with

either a circle or an arrow tip at the target of the arrow, and a line at the arrow source

to indicate the direction of the arrow. The arrow tip is used for excitatory connections,

and the circle for inhibitory connections. At the start of the arrow is a perpendicular

line, which makes discerning the direction of the arrow easier. The thickness of the arrow

relates to the synaptic weight of the projection, and is scaled relative to other projection’s

weights. The size of the arrow tip should change based on the indegree of the projection,

but has not been implemented yet. Hovering over a projection highlights it in red. When

hovering over a population, the outgoing projections are highlighted in blue, and the

incoming projections in orange.

The user stories focus on the interactivity with the system. Since NeuroScheme’s

interactivity features were built for examining data instead of creating data, the system

is still missing features. The user stories have been implemented as follows:

• Creating a neuron population (U1) is possible, but only through right clicking the

scene. No buttons for the toolbar have been implemented yet. When Add new

neuron pop is selected from the context menu, a dialog on the right hand panel

appears, which allows the creation of multiple neuron populations at once.

• Creating projections between populations (U2) is possible, although still in need of

better usability. When the Display connectivity mode is active (selectable in the

toolbar), a projection can be clicked and dragged from one population to another.

A dialog appears where the projections parameters can be set. While populations

can be selected for editing, projections can not.
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• Changing the projection parameters (U3) is only possible by creating a new pro-

jection over the old one. The old projection is then overwritten with the new

parameters. Deleting projections is not possible.

• Creating and connecting inputs (U4) is not possible yet, as inputs do not have a

representation in NeuroScheme yet.

• Searching for a specific element by name (U5) is not possible. The outline has not

been implemented, but populations and projections can be given names. The name

of a population can only be seen in the properties panel on the right when editing

the population. Connection names can not be examined at all.

• Selecting multiple projections is also not possible yet, which makes editing of filtered

selections (U6, U7) impossible.

• The grouping of elements (U8) has not been implemented. The populations can

not be moved freely in the scene; only arranging populations in a grid or circular

pattern is possible.

• The parameter and connectivity matrices (U9) have not been implemented.

• To simulate a created model (U10), the model has to be exported to a NeuroML file

and then manually passed to the translator. Simulation directly from NeuroScheme

is not possible. Exporting the model can be done by selecting Scene → Save in the

menu bar.

4.3.2 Visual Language Analysis

The visual language has been designed to be intuitive and expressive, and is based on

interviews from neuroscientists and figures from neuroscience papers. If the visualization

is actually useful for neuroscientists is still open for question. At the point of writing, the

visual tool developed by the GMRV does not have enough functionality to test the usabil-

ity to full extent. As a proof of concept, the model described in Potjans and Diesmann

[26] (Fig. 4.3a) was implemented in the proposed language. The model of the corti-

cal network described by Potjans and Diesmann consists of eight neuron populations,

which are grouped into four layers with an inhibitory and excitatory population each.

One thalamic population gives additional input to the layers. The model uses random

connectivity, with probabilities compiled from anatomical and physiological data. The

weights and delays of the models are distributed on a Gaussian distribution for all con-

nections. Figure 4.3b shows what the model looks like when recreated with the current
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(a) Original model from Pot-
jans and Diesmann [26].

(b) Recreated model with current build of Neu-
roScheme. Labels have been added in for clarity.

L2/3e L2/3i

L4e

L4i

L5eL5i

L6e

L6i

(c) Concept design for recreated model

Figure 4.3: The original Potjans-Diesmann model (a), the recreated model in NeuroScheme (b),
and how the model may look like in a later version of NeuroScheme (c).
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implementation of the NeuroScheme tool. Since the visual language has not been fully

implemented into NeuroScheme yet, it is missing some features (see 4.3.1). To fully show

the capabilities of the visual language, the model has been recreated with PGF/TikZ in

Figure 4.3c. The recreated visualization opens up a lot of details that may not be possible

to deduct from the original representation:

• The high connectivity towards L2/3e is caused by the relatively large number of

neurons, which is immediately visible through the arrow tips pointing at the layer.

• L4e has about the same number of neurons as L2/3e, but the arrows indicate a low

connectivity towards L4e.

• The connections towards L4e are also mainly inhibitory, as indicated by the circular

arrow tips.

• All layers have a high amount of recurrent connections.

These insights demonstrate the abilities of the visual language. The visual language is

able to give information about the network which otherwise can only be attained through

careful analysis of the connectivity matrix and population sizes.
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Chapter 5

Conclusion and Future Work

This project has introduced a visual language for connectivity and a way of translating

it to a simulator. The resulting ViCoGen package could be successfully tested with a

cortical network model, simulating it from a simulator independent model description.

Additionally, applying the visual language to the cortical network model provided a richer

visualization for connectivity than existing representations.

To arrive at the visual language, usability interviews have been conducted and an-

alyzed. Neuroscientists with different backgrounds were interviewed on their usage of

connectivity in their models. Participants contributed their ideas for visual represen-

tations of connectivity, and provided insight into synaptic parameters. The interviews

cleared up which parameters are important when modeling connectivity, and what visual

representations are intuitive for neuroscientists.

Many projects have attempted to visualize the brain to allow a deeper and more

intuitive understanding of connectivity. While 3D visualizations can show the spatial re-

lation of brain regions, they lack the descriptive power of more abstract representations.

NeuroScheme shows that the abstraction of visual elements can help the understanding

of network models by only showing relevant information. The visual language for con-

nectivity that has been developed based on the usability interviews tries to combine the

visual abstractions of NeuroScheme, the intuitive representations used in neuroscience

papers (e.g. Potjans and Diesmann [26]), and the information dense connectivity matrix

visualizations used in Nordlie and Plesser [22].

With the resulting visual language, complex neuronal models could be recreated to

gain a better insight into the connectivity of the model. As an implementation for the

language, a GUI for building network models has been developed in collaboration with the

GMRV in Madrid. NeuroScheme proves to be an adept framework for general visualiza-

tions in the neuroscience field, and its well modulated structure allows for implementing
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the defined visual language. The interactivity of the system has been implemented by

the GMRV, and basic models can be created and exported using the visual tool.

Furthermore, a way of translating the visual language has been achieved by combining

various existing technologies into a translator. The translator fulfills most of the technical

requirements stated in Section 2.4, and the critical path of translation can be successfully

executed. Any model created with the GUI and the visual language can be expressed

using the NeuroML standard and parsed by the translator, ensuring the modularity of the

system. The translator has been developed to parse NeuroML files and passing them to

the simulator. CSA has been applied successfully as a way of expressing the connectivity

of the parsed models in a simulator independent way. To ensure a complete feature

set of the translation, missing elements of CSA and NeuroML have been proposed and

implemented. Through the Connection Generation Interface, the NEST simulator could

be connected to the translator, allowing for the simulation of a model directly from the

visual language.

While the requirements for performance could not be met with the Python implemen-

tation of CSA, the modular design allows exchanging the connection generation library

with minimal development cost. The C++ implementation of CSA, libcsa, shows al-

most no overhead in the connection generation process in comparison to the simulator.

Progress on extending libcsa has been done, and a complete version may be available

soon. With a fully implemented libcsa, the performance requirement can be easily

solved.

Simulator independent modeling has previously been attempted using PyNN as a

simulator interface, but the problem of writing code remained. The ViCoGen toolchain

allows the user to create a network model without writing simulation code. ViCoGen

attempts to fill the gap between designing a model and simulating it by implementing

the full process from the GUI to the simulator. Although ViCoGen will not replace

writing simulation code entirely, the learning curve of using neuronal simulators can be

greatly reduced, especially for fields outside of computer science or teaching.

The visual language provided is able to represent complex models in a way that

rivals custom representations. Once the language is fully implemented in NeuroScheme,

improving the visual language will be a continuous process as new applications for the

GUI emerge. Making the visual language customizable by users may also be a useful

feature, as one single representation is unlikely to cover all applications of the language.

For this, the usability tests have to be expanded to more fields of neuroscience.

To improve the ViCoGen framework in the future, more work has to be put into ex-

tending the interfaces and improving performance. More simulators need to be added to

the translator and to the Connection Generation Interface. So far only the NEST Sim-
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ulator is fully supported by the translator. The problem of the Connection Generation

Interface is that it can not separate the simulator from the translator completely. Pop-

ulations, input and simulation control still lack a proper interface. Writing an interface

for other parts of the simulation would improve the modularity of ViCoGen immensely,

and adding new simulators would become easier.

The NeuroML framework works well for exchanging model information, but it could

be used to its full extend in the future. The lower two levels of NeuroML, MorphML

and ChannelML, could be used to provide the simulator with more detailed neuron and

synapse models. Including all levels of NeuroML would allow more accurate small scale

simulations, or even simulations of single neurons as biologically accurate as possible.

On the side of the abstraction scale, the third level, NetworkML, may be improved to

support more connectivity features. The connectivity patterns of NeuroML are limited

to what is defined in NetworkML, with the exception of defining individual connections.

More complex patterns like those in CSA can not be described in NeuroML. It may be

possible to add the functionality of CSA to NeuroML, as both can be written in XML. If

NeuroML would support a CSA connectivity pattern object, any possible pattern could

be described using NeuroML.

To improve the performance of ViCoGen, the C++ implementation of CSA has to be

developed to fully support the algebra. The performance of the system depends on the

connection generation, thus having a performance optimized version is critical. libcsa

also needs to support high performance computing and distributed systems, as large

scale networks require significant computing power. So far, only a small subset of the

Connection Set Algebra is implemented in libcsa, but a rewrite of the codebase may be

necessary to support all features.

The project opens up many additional complementary projects. For example, the

results of a simulation have to be passed back to the GUI, processed, and displayed. Such

a project would include finding appropriate visualizations of simulation results, interfaces

to extract the data from simulators, and data processing tools. Further projects are

the control and in situ visualization of a simulation during run time, comparing results

between simulation, and raw data storage. All these projects are outlined in the Modular

Science Framework, proposed by Wouter Klijn and Sandra Diaz. The Modular Science

framework aims to provide tools for all areas of computational network models. All

the parts of the framework are built in a modular way, so that researchers can plug

their own tools into the framework through a set of interfaces, allowing them to use the

visualization, analysis and simulation tools provided. The modules are controlled through

Module Orchestration software, which allows the selection of modules, the communication

between them, and smaller tasks such as logging and monitoring. The framework would
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allow faster development of new tools and more efficient reuse of existing tools. The

ViCoGen project denotes the foundation of this Modular Science framework, and is the

first step towards a more complex and extensive system.
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Chapter 6

Supplements

6.1 Example Models

Spatially Connected Model

<neuroml xmlns="http://morphml.org/neuroml/schema">

<populations xmlns="http://morphml.org/networkml/schema">

<population name="PopA" cell_type="iaf_psc_alpha">

<pop_location>

<random_arrangement population_size="75">

<rectangular_location>

<corner x="0" y="0" z="0"/>

<size width="2" height="3" depth="1"/>

</rectangular_location>

</random_arrangement>

</pop_location>

</population>

<population name="PopB" cell_type="iaf_psc_alpha">

<pop_location>

<random_arrangement population_size="50">

<rectangular_location>

<corner x="0" y="0" z="0"/>

<size width="0.5" height="2.5" depth="2"/>

</rectangular_location>

</random_arrangement>

</pop_location>

</population>

</populations>

<inputs>

<input name="InputA">

<random_stim frequency="600"/>

</input>

</inputs>

<projections units="Physiological Units" xmlns="http://morphml.org/networkml/schema">

<projection name="PopA-PopB" source="PopA" target="PopB">

<synapse_props synapse_type="StaticSynapse" threshold="-20">

<weight> 90.0 </weight>
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<internal_delay> 0.5 </internal_delay>

</synapse_props>

<connectivity_pattern>

<gaussian_connectivity_2d sigma="1.5" cutoff="3"/>

</connectivity_pattern>

</projection>

<projection name="InputA-PopA" source="InputA" target="PopA">

<synapse_props synapse_type="StaticSynapse" threshold="-20">

<weight> 90.0 </weight>

<internal_delay> 0.5 </internal_delay>

</synapse_props>

<connectivity_pattern>

<all_to_all/>

</connectivity_pattern>

</projection>

</projections>

</neuroml>

Distributed Parameter Model

<neuroml xmlns="http://morphml.org/neuroml/schema">

<populations xmlns="http://morphml.org/networkml/schema">

<population name="PopA" cell_type="iaf_psc_alpha"/>

<population name="PopB" cell_type="iaf_psc_alpha"/>

</populations>

<projections units="Physiological Units" xmlns="http://morphml.org/networkml/schema">

<projection name="Gaussian" source="PopA" target="PopB">

<synapse_props synapse_type="StaticSynapse" threshold="-20">

<weight>

<GaussianDistribution center="87.8" deviation="8.8"/>

</weight>

<internal_delay>

<GaussianDistribution center="3.5" deviation="0.75"/>

</internal_delay>

</synapse_props>

<connectivity_pattern>

<all_to_all/>

</connectivity_pattern>

</projection>

<projection name="Uniform" source="PopA" target="PopB">

<synapse_props synapse_type="StaticSynapse" threshold="-20">

<weight>

<UniformDistribution lower="1" upper="2.5"/>

</weight>

<internal_delay>

<UniformDistribution lower="0.1" upper="0.75"/>

</internal_delay>

</synapse_props>

<connectivity_pattern>

<all_to_all/>

</connectivity_pattern>

</projection>

</projections>

</neuroml>
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6.2 Installation Instructions

6.2.1 CSA and NEST with CGI

1. Install autoconf using sudo apt-get install autoconf

2. Clone and install libneurosim:

git clone https://github.com/INCF/libneurosim.git

cd libneurosim

./autogen.sh

./configure --prefix=$HOME/opt/libneurosim

make

make install

3. Install csa:

git clone https://github.com/INCF/csa.git

cd csa

./autogen.sh

./configure --with-libneurosim=$HOME/opt/libneurosim

make

sudo make install

4. Install NEST:

git clone https://github.com/nest/nest-simulator

cd nest-simulator

cmake .. -Dwith-libneurosim=$HOME/opt/libneurosim

make

sudo make install

Used Versions

• libneurosim at commit acc5b1a6445c82d66fba9bb8681360e00d7a3c9d

• csa at commit a5cc33a56549cf76656dfab0af135bc55f7d1cda

• NEST at commit efd79cb486d299b08cf0796dc5d2cc1ade7581fb

• autoconf 2.69-9

• Python 2.7.12
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6.2.2 Compiling and installing libcsa

In the libcsa root, execute:

bash autogen.sh

./configure CXXFLAGS="-std=c++14"

make

sudo make install

After that, you have to add the path to the LD LIBRARY PATH environment variable for

your terminal:

export LD_LIBRARY_PATH=/usr/local/lib

You can add this to your .bashrc file to execute always on bash startup. You may have

to add this variable to any IDE you are using.

6.2.3 Installing NeuroScheme

1. Clone from Git (e.g. git clone git@gitlab.gmrv.es:nsviz/NeuroScheme.git)

2. Install Boost using sudo apt-get install libboost-all-dev

3. Install Qt

(a) Download an installer from https://www.qt.io/download-open-source/

(b) If using the online installer, you have to make it executable using chmod +x

qt-unified-linux-x64-2.0.5-2-online.run

(c) Run the installer

4. Download and extract Eigen 3 from http://eigen.tuxfamily.org

• Inside the eigen directory, make a new build directory, build and install using

these commands:

mkdir build_dir

cd build_dir

cmake ..

make

sudo make install

5. To build NeuroScheme, run the following commands inside the NeuroScheme source

folder:
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mkdir build && cd build

cmake .. -DCMAKE_BUILD_TYPE=Release

make rebase

make

sudo make install

6. This will install NeuroScheme into /usr/bin/NeuroScheme. Running sudo make

install is optional. You can also run NeuroScheme directly from build/bin/NeuroScheme.

(a) cmake will fail if the folders FiReS, scoop, and ShiFT are not inside the Neu-

roScheme root folder, and are not downloaded automatically during cmake.

Download the repositories from a different source and place the three folders

inside the NeuroScheme source root.

(b) Rerun cmake .. -DCMAKE BUILD TYPE=Release, then make and sudo make

install.

When pulling a new version, make sure to use make rebase to update all dependencies

from their git repositories.

Starting ConGen

To start the interactive connectivity generation, use ./NeuroScheme -d congen. Right

click the workspace to add new neuron populations. Left click and drag to create a new

connection. Make sure Show connectivity is active (top icon bar) to see connections. To

save a model, select Scene → Save from the menu bar.

Used Versions

• ubuntu-16.04.2-desktop-amd64

• NeuroScheme at commit 66f56823cc841e38d4c09f0f7b29744b513a79c0

• scoop at commit cc02a23db899f06a6cfa9c17d41b795f5e9971be

• FiReS at commit 0da27f916ec54d69d4aff32be5b253fab496ec4a

• ShiFT at commit 97ec57cda8481c47dd81eae480aa1ccf0a56ed4b

• Boost version 1.58.0.1ubuntu1

• Qt 5.2 (qt-unified-linux-x64-2.0.5-2)

• Eigen 3.3.3
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6.2.4 Installing ViCoGen

The Python package does not need to be installed to be used, but can be added to your

Python libraries. In the ViCoGen root, execute:

mkdir build && cd build

cmake ..

make

sudo make install

6.3 ViCoGen Usage Instructions

ViCoGen can be used independently of the GUI. The ViCoGen package can be imported

in Python using import vicogen. Alternatively, ViCoGen can be used directly from the

console by executing it as a Python module in the command line.

python -m vicogen [-h] [-o [OUTFILE]] [-t SIMTIME] [-c]

[--nest-options NEST_OPTIONS] [-d] [-v]

modelfile

modelfile is the NeuroML file to be parsed and has to be given. The module supports

the following command line arguments:

Argument Description

-h, --help Shows a help message on the usage.

-o [OUTFILE], --outfile [OUTFILE] Set the file to write output to. If not given,

the output is written to stdout.

-t SIMTIME, --simulate SIMTIME Simulate the model for a given amount of

milliseconds using NEST.

-c, --write-connections Instead of simulating the network, parse the

connections and write them to output.

--nest-options NEST OPTIONS Additional options for NEST.

-d, --debug Print debugging information.

-v, --verbose Print verbose messages.
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[6] Andrew Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller, Dejan

Pecevski, Laurent Perrinet, and Pierre Yger. Pynn: a common interface for neuronal

network simulators. Frontiers in Neuroinformatics, 2:11, 2009. ISSN 1662-5196.

doi: 10.3389/neuro.11.011.2008. URL https://www.frontiersin.org/article/10.

3389/neuro.11.011.2008.

60

http://dx.doi.org/10.3389/neuro.11.008.2009
https://doi.org/10.1007/s12021-007-0004-5
https://doi.org/10.1007/s12021-007-0004-5
https://www.frontiersin.org/article/10.3389/fninf.2014.00079
https://www.frontiersin.org/article/10.3389/fninf.2014.00079
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008


[7] Mikael Djurfeldt. The connection-set algebra—a novel formalism for the represen-

tation of connectivity structure in neuronal network models. Neuroinformatics, 10

(3):287–304, Jul 2012. ISSN 1559-0089. doi: 10.1007/s12021-012-9146-1. URL

https://doi.org/10.1007/s12021-012-9146-1.

[8] Mikael Djurfeldt, Andrew P. Davison, and Jochen M. Eppler. Efficient generation of

connectivity in neuronal networks from simulator-independent descriptions. Fron-

tiers in Neuroinformatics, 8:43, 2014. ISSN 1662-5196. doi: 10.3389/fninf.2014.

00043. URL https://www.frontiersin.org/article/10.3389/fninf.2014.00043.

[9] Jochen M Eppler, Moritz Helias, Eilif Muller, Markus Diesmann, and Marc-Oliver

Gewaltig. PyNEST: a convenient interface to the NEST simulator. Frontiers in

Neuroinformatics, 2(12), 2009. ISSN 1662-5196. doi: 10.3389/neuro.11.012.2008.

[10] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for

finding best matches in logarithmic expected time. ACM Trans. Math. Softw., 3

(3):209–226, September 1977. ISSN 0098-3500. doi: 10.1145/355744.355745. URL

http://doi.acm.org/10.1145/355744.355745.

[11] Wulfram Gerstner and Werner M. Kistler. Spiking neuron models : single

neurons, populations, plasticity / Wulfram Gerstner ; Werner M. Kistler. Cam-

bridge [u.a.] Cambridge Univ. Press 2008, 2008. ISBN 9780521890793. URL

http://widgets.ebscohost.com/prod/customerspecific/s9118275/vpn.php?

url=http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&

db=cat04752a&AN=rub.2737758&lang=de&site=eds-live&scope=site.

[12] Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation tool). Schol-

arpedia, 2(4):1430, 2007.

[13] Padraig Gleeson, Volker Steuber, and R. Angus Silver. neuroconstruct: A tool for

modeling networks of neurons in 3d space. Neuron, 54(2):219 – 235, 2007. ISSN

0896-6273. doi: https://doi.org/10.1016/j.neuron.2007.03.025. URL http://www.

sciencedirect.com/science/article/pii/S0896627307002486.

[14] Padraig Gleeson, Sharon Crook, Robert C. Cannon, Michael L. Hines, Guy O.

Billings, Matteo Farinella, Thomas M. Morse, Andrew P. Davison, Subhasis Ray,

Upinder S. Bhalla, Simon R. Barnes, Yoana D. Dimitrova, and R. Angus Silver.

Neuroml: A language for describing data driven models of neurons and networks

with a high degree of biological detail. PLOS Computational Biology, 6(6):1–19,

06 2010. doi: 10.1371/journal.pcbi.1000815. URL https://doi.org/10.1371/

journal.pcbi.1000815.

61

https://doi.org/10.1007/s12021-012-9146-1
https://www.frontiersin.org/article/10.3389/fninf.2014.00043
http://doi.acm.org/10.1145/355744.355745
http://widgets.ebscohost.com/prod/customerspecific/s9118275/vpn.php?url=http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat04752a&AN=rub.2737758&lang=de&site=eds-live&scope=site
http://widgets.ebscohost.com/prod/customerspecific/s9118275/vpn.php?url=http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat04752a&AN=rub.2737758&lang=de&site=eds-live&scope=site
http://widgets.ebscohost.com/prod/customerspecific/s9118275/vpn.php?url=http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat04752a&AN=rub.2737758&lang=de&site=eds-live&scope=site
http://www.sciencedirect.com/science/article/pii/S0896627307002486
http://www.sciencedirect.com/science/article/pii/S0896627307002486
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1371/journal.pcbi.1000815


[15] Dan Goodman and Romain Brette. The brian simulator. Frontiers in Neuroscience,

3:26, 2009. ISSN 1662-453X. doi: 10.3389/neuro.01.026.2009. URL https://www.

frontiersin.org/article/10.3389/neuro.01.026.2009.

[16] Moritz Helias, Susanne Kunkel, Gen Masumoto, Jun Igarashi, Jochen Eppler, Shin

Ishii, Tomoki Fukai, Abigail Morrison, and Markus Diesmann. Supercomputers

ready for use as discovery machines for neuroscience. Frontiers in Neuroinformatics,

6:26, 2012. ISSN 1662-5196. doi: 10.3389/fninf.2012.00026. URL https://www.

frontiersin.org/article/10.3389/fninf.2012.00026.

[17] M. L. Hines and N. T. Carnevale. The NEURON simulation environment. Neural

Computation, 9(6):1179–1209, Aug 1997.

[18] David H Hubel. Eye, brain, and vision. New York, NY, US: Scientific American

Library/Scientific American Books, 1995.

[19] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific

tools for Python, 2001–. URL http://www.scipy.org/.

[20] Susanne Kunkel, Abigail Morrison, Philipp Weidel, Jochen Martin Eppler, Ankur

Sinha, Wolfram Schenck, Maximilian Schmidt, Stine Brekke Vennemo, Jakob Jor-

dan, Alexander Peyser, Dimitri Plotnikov, Steffen Graber, Tanguy Fardet, Den-

nis Terhorst, H̊akon Mørk, Guido Trensch, Alex Seeholzer, Rajalekshmi Deepu,

Jan Hahne, Inga Blundell, Tammo Ippen, Jannis Schuecker, Hannah Bos, Sandra

Diaz, Espen Hagen, Sepehr Mahmoudian, Claudia Bachmann, Mikkel Elle Lepperød,

Oliver Breitwieser, Bruno Golosio, Hendrik Rothe, Hesam Setareh, Mikael Djurfeldt,
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Ich erkläre weiterhin, dass ich die Arbeit nicht an einer anderen Hochschule zur Erlan-

gung eines akademischen Grades eingereicht habe.
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