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École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
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The investigations of the interconnection between micro– and macroscopic properties of materials
hosting noncollinear antiferromagnetic ground states are challenging. These forefront studies are
crucial for unraveling the underlying mechanisms at play, which may prove beneficial in designing
cutting edge multifunctional materials for future applications. In this context, Mn5Si3 has regained
scientific interest since it displays an unusual and complex ground state, which is considered to
be the origin of the anomalous transport and thermodynamic properties that it exhibits. Here, we
report the magnetic exchange couplings of the noncollinear antiferromagnetic phase of Mn5Si3 using
inelastic neutron scattering measurements and density functional theory calculations. We determine
the ground-state spin configuration and compute its magnon dispersion relations which are in good
agreement with the ones obtained experimentally. Furthermore, we investigate the evolution of the
spin texture under the application of an external magnetic field to demonstrate theoretically the
multiple field induced phase transitions that Mn5Si3 undergoes. Finally, we model the stability of
some of the material’s magnetic moments under a magnetic field and we find that very susceptible
magnetic moments in a frustrated arrangement can be tuned by the field.

I. INTRODUCTION

The noncollinear spin arrangements in magnetic mate-
rials gives rise to important macroscopic phenomena that
can be exploited for developing future information and
communication technologies. Characteristic examples
are the recent observation of large anomalous transport
properties near room temperature, such as the anomalous
Nernst1 and Hall2,3 effects, in the metallic noncollinear
antiferromagnetic systems Mn3X (with X = Sn,Ge). In
turn, these discoveries have initiated spectroscopic stud-
ies that have provided insight into the intimate coupling
between the various degrees of freedom, i.e., spin, lat-
tice and electronic, which could explain the interesting
anomalous phenomena in these materials4–6. Therefore,
it is evident that an experimental study of the spin dy-
namics and a comparison with theoretical models is cru-
cial for understanding the origin of noncollinear spin ar-
rangements and the peculiar properties that arise in or-
dered solid materials.

Mn5Si3 is another Mn-based metallic antiferromagnet
(AFM) that has lately regained scientific interest owing
to interesting thermodynamic (inverse magnetocaloric ef-
fect7,8, inverted hysteresis loop, and thermomagnetic ir-
reversibility9) and transport (large anomalous Hall ef-

fect10) phenomena. It has two stable AFM phases,
namely, the AFM2 for 60 < T < 100K and AFM1 for
T < 60K, that are confirmed by a plethora of macro-
scopic measurements7,9–13 in thin film, polycrystalline
and single crystal samples. While neutron diffraction
studies in powders14 and single crystals15 are in agree-
ment regarding the collinear spin arrangement in the
AFM2 phase, in past years several contradicting spin
structures14,16–18 have been proposed for the noncollinear
AFM1 phase, where the interesting thermodynamic and
transport properties are observed. So far, there has not
been a dedicated study concerning the spin dynamics in
the AFM1 phase, which could give additional insight into
the magnetic spin structure. Therefore, in the present pa-
per, we perform inelastic neutron scattering (INS) mea-
surements and density functional theory (DFT) calcu-
lations supplemented with various models to investigate
spin waves in the noncollinear AFM1 phase of Mn5Si3
and to characterize the magnetic ground-state properties
and electronic structure.

In the paramagnetic (PM) state, Mn5Si3 crystallizes in
hexagonal space group P63/mcm with two distinct crys-
tallographic positions for the Mn atoms (sites Mn1 and
Mn2)14. With decreasing temperature the onset of AFM
orders (first at TN2

≈ 100K and then at TN1
≈ 60K)



2

(a) (b)

(c) (d)

AFM2 AFM1

AFM1 AFM1

Si

Mn2

Mn1

J5

J6J4

J2

J1

J3

a

b

c

FIG. 1. Magnetic structures of Mn5Si3. (a) The collinear
AFM2 phase according to Refs. 14, 15, and 19. Proposed non-
collinear AFM1 phase from (b) Ref. 18 and 20, (c) Ref. 14 and
(d) the present paper. Sites occupied by Mn1, Mn2, and Si
atoms are shown with red, magenta, and yellow spheres, re-
spectively. The green arrows depict the orientation of the
magnetic moments and the blue solid lines indicate the rel-
evant exchange interactions used in the Heisenberg Hamil-
tonian (see details in text). The black triangle highlights a
noncollinear spin arrangement formed by the Mn1 and Mn2
magnetic moments, which is a common feature to all proposed
AFM1 magnetic structures.

results in a reduction of the crystal symmetry. For tem-
peratures between 60 < T < 100K (AFM2 phase), the
crystal structure can be described by a centrosymmetric
orthorhombic cell with space group Ccmm, where Mn2
divides into two sets of nonequivalent positions14,15. In
this cell, magnetic reflections follow the condition h + k
odd, the magnetic propagation vector is κ = (0, 1, 0), and
only two-thirds of the Mn2 atoms acquire magnetic mo-
ments aligned parallel and antiparallel to the b axis of the
orthorhombic unit cell14,15(see Fig. 1(a) for a more de-
tailed discussion in the upcoming sections). In addition,
recently performed DFT calculations are in line with the
experimentally established collinear magnetic structure

FIG. 2. Temperature and magnetic field phase diagram of
Mn5Si3 for B ∥ ĉ based on Ref. 12. The borders between the
phases are determined from different macroscopic measure-
ments: magnetization, resistivity, and Hall effect.

of the AFM2 phase19. For T < 60K (AFM1 phase),
the crystal symmetry is further reduced, the magnetic
moments reorient in a highly noncollinear and noncopla-
nar arrangement, while the propagation vector remains
the same as in the AFM2 phase. Albeit, the magnetic
structure has monoclinic14,18,21 or possibly lower sym-
metry22, and the atomic positions can be described with
an orthorhombic cell without inversion symmetry (space
group Cc2m)18,21. According to the proposed magnetic
structures (see Figs. 1(b) and 1(c)), the AFM1 phase is
quite complex and rather unusual, as the Mn atoms ac-
quire different magnetic moments even if they have sim-
ilar chemical environments. Despite the controversy re-
garding the spin orientation in the AFM1 phase, it is
accepted that not only two-thirds of the Mn2 (as in the
AFM2 phase) but also the Mn1 atoms carry a magnetic
moment, leaving still one-third of the Mn2 atoms without
moment14,16,18.

In Mn5Si3, apart from the reduction of temperature,
the application of an external magnetic field results in
field induced transitions9,11,12,23. The magnetic phase
diagram as a function of temperature and magnetic field
as established by magnetization and electrical transport
measurements is shown in Fig. 2. A very steep phase
boundary TN2(B) is outlined between the AFM2 phase
and the PM state and in the temperature range where
the AFM2 phase is observed, no field induced transi-
tion is reported up to the maximum investigated field
of 10T. Below 60K, the increasing magnetic field pre-
cipitates transitions from the AFM1 phase to another
intermediate AFM phase9,12 (marked AFM1’ in Fig. 2)
before reaching the collinear AFM2 phase. Neutron scat-
tering investigations under field in single crystal8,21 and
polycrystalline14 samples confirm the existence of these
phase transitions. We also note that for Mn5Si3 a modi-
fied B − T phase diagram from the one shown in Fig. 2
was proposed for flux grown single crystals13. The dif-
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ferences were suggested to originate from the inherent
stress that the samples acquire when grown by different
techniques.

II. METHODS

A. Experimental details

Two single crystals (with mass of about 7 g each) of
Mn5Si3 were individually mounted on an aluminium sam-
ple holder and oriented in the [100]/[010] and [010]/[001]
scattering plane of the orthorhombic symmetry, respec-
tively. The single crystals were grown by the Czochral-
ski method and are the same that were used in previ-
ous studies8,19. In Ref. 8, a few scans at constant E
(namely at 3, 5, and 7meV) were performed in order
to investigate the evolution of the spin excitation spec-
trum of Mn5Si3 under temperature and external mag-
netic field. The study highlighted the importance of field
induced spin fluctuations (at T = 50K and B = 10T)
and their relation to the inverse magnetocaloric effect.
In Ref. 19, INS spectra were collected at T = 80K for
investigating the magnons in the collinear AFM2 phase.
In the present paper, the spin waves in the AFM1 phase
of Mn5Si3 were investigated as a function of the wave-
vector Q and the energy transfer E at T = 10K. In this
paper, we use the orthorhombic coordinate system and
the scattering vector is expressed in Cartesian coordi-
nates Q = (Qh, Qk, Ql) given in reciprocal lattice units
(r.l.u.). The wave-vector q is related to the momentum
transfer through ℏQ = ℏG + ℏq, where G is an AFM
zone center and G = (h, k, l).

INS experiments were carried out at the Institut Laue-
Langevin (ILL) using the cold and thermal neutron
three-axis spectrometers (TASs) IN1224 and IN22, re-
spectively. The instrument resolution was in each case
adapted to the studied momentum and energy range.
Both TASs were set up in a W configuration and in-
elastic scans were performed with constant kf , where kf

is the wave-vector of the scattered neutron beam. A py-
rolytic graphite (PG(002)) monochromator and analyzer
were used. Higher-order contamination was removed us-
ing a velocity selector (at IN12) and a PG filter (at IN22)
before the monochromator and in the scattered neutron
beam, respectively. The single crystals were cooled below
room temperature with a 4He flow cryostat. The neutron
data collected at ILL are available at Refs. 25–27.

B. Modeling the AFM1 phase of Mn5Si3

The starting point for modeling the noncollinear phase
(AFM1) of Mn5Si3 is the Heisenberg Hamiltonian pro-
posed in a recent study in Ref. 19, where first-principles
calculations were performed to determine the ground
state electronic and magnetic properties of the collinear

phase (AFM2). In the following paragraph, the methods
and the relevant results of Ref. 19 are briefly summarized.
DFT was employed using the full-potential Korringa-

Kohn-Rostoker Green’s function (KKR-GF) method in-
cluding spin-orbit coupling, as implemented in the
JuKKR code28, using the local spin density approx-
imation29. The magnetic exchange tensor, which
parametrizes the spin Hamiltonian, was obtained
through the infinitesimal rotations method30,31. The
Hamiltonian reads as:

H = −
∑
ij

JijSi · Sj −
∑
α

kα
∑
i

(Sα
i )

2, (1)

where the first term captures the magnetic exchange
interactions and the second term accounts for the bi-
axial magnetocrystalline anisotropy. Si refers to the
spin, which is set to S = 1. The magnetic exchange
interactions for the AFM2 phase were obtained from
first-principles calculations. The DFT calculations also
indicated that b and c are the primary and the sec-
ondary easy-axis, respectively19, with kb = 0.12meV per
magnetic atom (meV/p.m.a) and kc = 0.03meV/p.m.a.
To match the INS data for the spin-wave gap at the
magnetic zone center, the authors in Ref. 19 set kc =
0.09meV/p.m.a. and scaled down uniformly the DFT
parameters, exchange interactions, and anisotropy con-
stants, by a factor of 10.

Parameter Type Value (meV) Distance (Å)
J1 Mn2–Mn2 −12.23 2.825
J2 Mn2–Mn2 −2.16 2.907
J3 Mn2–Mn2 +3.98 4.054
J4 Mn2–Mn2 −2.89 4.371
J5 Mn1–Mn1 +11.99 2.407
J6 Mn1–Mn2 −2.17 2.959

TABLE I. Calculated exchange constants Jij for Mn5Si3 that
stabilize our proposed magnetic structure for the noncollinear
AFM1 phase. The distance refers to the corresponding Mn–
Mn bond length. Positive (negative) values characterize FM
(AFM) coupling.

Based on refinements on neutron diffraction
data14,16,18, the Mn1 sites of the noncollinear phase
(AFM1) of Mn5Si3 acquire a finite magnetic moment.
As we are technically limited to extract exchange
interactions from collinear phases, we performed a
DFT calculation with the magnetic moments in a
ferromagnetic (FM) configuration19. In this state, the
Mn1 sites have a finite magnetic moment (about half
of the moment in the Mn2 sites, similar to the value
obtained in Ref. 18), which then allows us to calculate
its exchange interactions with the other moments.
Using this calculation, one can estimate the exchange
coupling between the nearest-neighbors Mn1–Mn1 (J5)
and Mn1–Mn2 (J6) interactions. Thus, in the model
introduced in the previous paragraph, we add a finite
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magnetic moment in the Mn1 sites, a FM coupling
between the Mn1 sites along the c axis, and an AFM
coupling between the Mn1 and Mn2 sites (see Table I).

To investigate the AFM1 phase of Mn5Si3, we con-
sider an orthorhombic cell as described in Ref. 18 and
we used the Hamiltonian parameters as obtained from
DFT without any rescaling or adjustment. The values for
the magnetic exchange interactions are shown in Table I
and the parameters for the biaxial magnetic anisotropy
are kb = 0.12meV/p.m.a and kc = 0.03meV/p.m.a. As
the INS measurements were performed at a low temper-
ature (T = 10K), we do not need to rescale the Hamilto-
nian parameters to account for thermal fluctuations when
modeling the spin-wave spectrum. In Fig. 1d and in Ta-
ble I, J1, J2, and J3 correspond to couplings between the
Mn2 spins in the same [Mn2]6 octahedra, J4 refers to the
interaction between Mn2 spins located in adjacent [Mn2]6
octahedra, J5 couples the Mn1–Mn1 spins along the c
direction and J6 concerns the shortest distance between
Mn1–Mn2 spins. The exchange parameters J1 to J4 and
the anisotropy parameters were reported in Ref. 19 for
the investigation of the AFM2 phase, while J5 and J6
resulted from our DFT calculations in the present paper.
These two additional exchange interactions (J5 and J6)
connecting the Mn1–Mn1 and Mn1–Mn2 atoms make the
ground-state spin configuration and the spin-wave spec-
trum of the AFM1 phase completely different compared
to the AFM2 phase.

Spin dynamics simulations using the Spirit code32 were
performed for determining the ground-state spin config-
uration (see Fig. 1(d)). After the completion of this
step, the spin-wave excitations of the quantum Heisen-
berg Hamiltonian were obtained by employing the linear
spin-wave approximation. The spin-wave excitations are
the eigenstates of the dynamical matrix associated with
the quantum Heisenberg Hamiltonian in Eq. (1), as ex-
plained in detail in Ref. 33. From the calculated magnon
eigenvalues and eigenstates, the inelastic scattering spec-
tra were derived using second-order time-dependent per-
turbation theory33–35.

III. RESULTS AND DISCUSSION

A. Spin waves in the AFM1 phase of Mn5Si3

The investigation of the magnon spectrum in the non-
collinear AFM1 phase was initiated with a collection of
energy spectra around the magnetic zone center G =
(1, 2, 0) at T = 10K. Fig. 3(a) shows the energy depen-
dence of the measured low energy excitations at different
Qh positions, where Q = (Qh, 2, 0). In each Qh position
the first peak is centered at E = 0meV and corresponds
to the elastic line, while the second one at finite E, which
propagates to higher energy transfers as Qh increases,
unambiguously points to gapped spin waves. The low
energy magnons along the (h00) direction in the AFM1
phase of Mn5Si3 are shown in Fig. 3(b) together with the

dispersion of the AFM2 phase for comparison.

Similarly to the AFM2 phase, the data in the AFM1
phase can be described by the empirical dispersion re-

lation E =
√
∆2 + C2q236 and the obtained values for

the spin gap ∆ and the constant C(h00) are 0.712(7)meV
and 28.4(4)meV/r.l.u, respectively. Comparing the spin
dynamics of two phases in the same (q, E) region reveals
that the noncollinear AFM1 phase is characterized by a
single gapped magnon branch at q = 0 in contrast to the
collinear AFM2 phase where a splitting of the spin-wave
modes is detected (double spin gap) due to the system’s
biaxial anisotropy19. The spin gap at T = 10K (AFM1
phase) is about twice the gap at T = 80K (AFM2 phase)
and its origin might be attributed to a local easy axis
within this phase. One other important feature that be-
comes evident by comparing the values of the constants
C(h00) is that the magnon dispersion in the AFM1 phase
is about five times steeper than in the AFM2 phase.

Further INS measurements with constantQ-scans were
carried out around different magnetic zone centers for
higher energy transfers where the kinematic constraints
could be satisfied. Fig. 3(c) shows a spectrum measured
at the magnetic zone center G = (2, 1, 0) at T = 10K
up to the energy transfer of 20meV. The observed peak
can be described by a single Gaussian function and is
assigned to an optical magnon branch that originates at
about 10meV.

Since steep magnons were measured at low energies
close to the magnetic zone center G = (1, 2, 0), scans
at constant E were performed to further obtain the dis-
persion relations for higher energy transfers. Spin-wave
excitations were measured along three high symmetry
directions of the orthorhombic symmetry ((h00), (0k0),
and (00l)) around different AFM zone centers, namely,
G = (2, 1, 0) and G = (0, 3, 1). Fig. 4 shows character-
istic inelastic scans where the observed intensities that
correspond to spin-wave scattering are fitted using dou-
ble Gaussian functions on top of a flat background. For
E < 10meV, the peak widths increase with increasing
energy transfer along all three directions (see Figs. 4(a)-
(c)). This broadening is independent of the instrumen-
tal resolution and is attributed to the contribution to
the scattering intensities of an optical branch that is ex-
pected to originate at about 10meV (see Fig. 3(c)). For
E > 10meV in the investigated Q and energy range
no further significant change in the peak widths is ob-
served, as can be seen in the raw data shown in Fig. 4(d).
We note that the asymmetry of the scattering intensities
which is observed in Fig. 4(b) leading to sharper and
more intense spin-wave peaks at −q compared to +q,
can be attributed to the instrumental resolution focusing
conditions.

The experimentally and theoretically determined
magnon dispersion relations of Mn5Si3 in the non-
collinear AFM1 phase are shown in Fig. 5. The color
mapping represents the intensity of the calculated in-
elastic scattering signal. By using the minimal Hamilto-
nian (see Section II), we capture theoretically the main
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FIG. 3. (a) Measured energy spectra at Q = (Qh, 2, 0) in the
AFM1 phase of Mn5Si3. Data were obtained at T = 10K at
IN12 with kf = 1.05 Å−1 and 40’-open-open collimations were
installed. (b) Low energy magnon dispersion in the AFM1
(shown in black) and AFM219 (shown in red) phases along the
(h00) direction. (c) Energy scan at Q = (2, 1, 0) at T = 10K
obtained at IN22 with kf = 2.662 Å−1. The solid lines in (a)
and (c) indicate fits with Gaussian functions, and in (b) fits

with the empirical dispersion relation E =
√

∆2 + C2q2.

features of the magnons observed experimentally with
INS along the three main crystal axes. Usually, energy-
dependent magnon damping is taken into account in the-
oretical calculations to reproduce some of the measured
features of spin excitations in metallic magnetic sys-
tems4,37. In our INS data (see Figs. 4), we observe almost
an uniform intensity throughout the whole measured

(a)

(b)

(c)

(d)

FIG. 4. Inelastic spectra at different constant energy trans-
fers measured at T = 10K at (a) Q = (Qh, 1, 0), (b)
Q = (0, Qk, 1), and (c)-(d) Q = (0, 3, Ql). The solid lines
are fits with Gaussian functions. The spectra are shifted for
clarity in intensity conserving the same scale. The data in (a),
(d) and (b), (c) were obtained at IN22 (with kf = 2.662 Å−1)
and IN12 (with kf = 2 Å−1), respectively.
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energy range thus not requiring an energy-dependent
broadening in the calculated spin-wave spectra. Return-
ing to the model results, the acoustic spin-wave modes
are centered around the AFM zone centers and have the
characteristic V-shape typically observed in several sys-
tems4–6,38–40. An optic mode with an energy minimum
of about 12meV is in good agreement with the one de-
termined experimentally with INS (see Fig. 3(c)). The
height of this optic mode at the AFM Γ-point is strongly
dependent on the J6 exchange interaction, which couples
the spins in the Mn1 and Mn2 sites. In the theoretical
scattering spectrum shown in Fig. 5(a), we observe also
a flat feature at about 3meV. According to our model,
this mode appears because of the existence of a magnetic
moment in the Mn1 sites and its dispersionless behavior
is due to the small value of J6.

B. Field induced phase transitions

To examine further if the theoretically obtained ex-
change interactions that stabilize a noncollinear spin ar-
rangement for Mn5Si3 (see Fig. 1(d)) and reproduce the
experimentally obtained magnon dispersion (see Figs. 5)
are realistic, we simulated the evolution of the magnetic
structure under an applied magnetic field. To this aim,
we included to our model Hamiltonian a Zeeman term
with the field applied along the c axis, since for this
field orientation the magnetic phase diagram is well es-
tablished (see Fig. 2).

We started from a random spin configuration and per-
formed spin dynamics simulations to determine an equi-
librium state under different magnetic fields. The same
random initial configuration was used for all fields. After
obtaining the equilibrium spin configuration, we calcu-
lated the energies of the spin-wave modes. By analyzing
the discontinuities in the evolution of the spin-wave ener-
gies as a function of the external field, we identified three
phase transitions, marked as A, B, and C in Figs. 6.

In the ground-state (B = 0T), the spins are non-
collinear and lie in the bc plane, which is the most en-
ergetically favorable plane when taking into account the
magnetocrystalline anisotropies of the system. In this
state, the Mn1 spins are mostly along the easy axis b,
while the Mn2 spins have significant components along
the c axis, see Fig. 1(d). Our proposed magnetic ground-
state for the AFM1 phase indicates that all the Mn1 and
two-thirds of the Mn2 sites carry a magnetic moment.
Although this is in agreement with most neutron diffrac-
tion data14,16,18, a difference is observed regarding the
spin orientation of the moments in the AFM1 phase in
literature (see Fig. 1(b)-(d)).

At a magnetic field of ∼ 2.31T, the system undergoes
the first phase transition (labeled A in Fig. 6), which can
be imagined as a “spin-flop” transition for the Mn2 spins
where all the spins then lie mostly in the ab plane. In
previous studies, a weak change of the magnetic suscep-
tibility at 30K was reported in powder samples14 and for

(a)

(b)

(c)

FIG. 5. Spin-wave dispersion relations of Mn5Si3 in the
noncollinear AFM1 phase along the three high symmetry di-
rections of the orthorhombic symmetry: (a) (h00), (b) (0k0),
and (c) (00l). The data points are obtained from INS mea-
surements and the color map corresponds to the calculated
inelastic scattering signal.

T < 20K a reduction in the magnitude of the anomalous
Hall effect was found in single crystals12. These obser-
vations hinted at a change of the spin configuration of
Mn5Si3 for small magnetic fields (B < 1T) at low tem-
peratures (T < 30K). From powder neutron diffraction
studies14, it is still not clear whether this is a new phase
or if the features observed so far could be associated with
weak rearrangement of the spins on the Mn2 site due to
magnetic frustration or magnetic anisotropies. However,
our model indicates a significant rearrangements of spins
in all magnetic sites (Mn1 and two-thirds of the Mn2)
which results in another noncollinear phase. This AFM
phase survives in a narrow magnetic field range, which
dependents on the second anisotropy parameter kc. Ac-
cording to our model, if kc is reduced the critical field for
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2.3 T 2.31 T
new AFM phaseA

2.4 T 2.5 T 2.6 T
AFM1’B

5.0 T 6.2 T 6.4 T
AFM2-likeC
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b
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FIG. 6. Spin configuration of Mn5Si3 (projected in the ab
plane of the orthorhombic cell) at various applied fields for
B ∥ ĉ. For simplicity we show only the spin orientation (as
arrows) of the Mn atoms that have a magnetic moment ac-
cording to our model. The color scale refers to the in-plane
(greenish) or out-of-plane (blue, red, yellow) projection of
the spins. Blue and red/yellow arrows point in and out of
the page, respectively. The dashed lines indicate the possi-
ble field induced phase transitions. The figures next to the
dashed lines show that spin configuration immediately before
and after the phase transition.

this first phase transition also decreases.
At a magnetic field of about 2.6T, a second transition

occurs (labeled as B in Fig. 6), which is more subtle.
According to our model, within this phase the spins lie
mostly in the ab plane and start to acquire a compo-
nent along the c axis. This phase is possibly associated
with the reported AFM1’ in several studies8,9,12 which,
however, is observed at higher magnetic fields of ∼ 5.5T
at 10K in experiments (see Fig. 2). Similarly with our
results, previous investigations indicate that the field in-
duced phase AFM1’ is expected to host a noncollinear
magnetic structure, as it has non zero Hall resistivity10,12.
A neutron powder diffraction study14 under a magnetic
field of 4T and for temperatures between 5 to 50K, sug-
gested a modification of the crystal and magnetic struc-
ture, which leads the magnetic order in the Mn1 sites to
vanish. However, a sizable field induced FM component

for all magnetic sites is measured along the field direc-
tion of about 0.1µB/Mn (single crystal neutron diffrac-
tion data at T = 58K and B = 3T)21, which is in agree-
ment with our simulations regarding the AFM1’ phase.
Finally, a third phase transition takes place (labeled

as C in Fig. 6) at ∼ 6.4T. This phase relates to the ex-
perimentally reported field induced AFM2 phase8,9,12,21

and occurs at about 9.5T at 10K (see Fig. 2). Magne-
tization23 and electric transport measurements10,12, as
well as INS studies8, proposed that the field induced
AFM2 phase exhibits similar properties to the zero field
collinear AFM2 phase observed at 60 < T < 100K. Con-
sistently, our model indicates that the Mn2 spins are
mostly collinear and antiparallel to each other as in the
AFM2 phase illustrated in Fig. 1(a), with the central dif-
ference that the Mn1 sites now host non-vanishing mag-
netic moments aligned parallel to the magnetic field di-
rection. We note that to our knowledge and until now,
neutron diffraction studies have been performed for mag-
netic fields less than 5T14,21 in the temperature range
where the transitions take place and, therefore, it is not
clear if the Mn1 moment collapses in the field induced
AFM2 phase for stronger magnetic fields. Concerning
the one-third of the Mn2 atoms that have no ordered mo-
ment at zero field14,16,18 it is suggested that they do not
acquire a field induced moment with field. According to
Ref. 21, the Mn magnetic moments and their magnitude
are dependent on the local environment, and an aligned
moment in this position (one-third of the Mn2 atoms)
may be only attributed to the presence of a local field
produced by aligned moments on neighboring magnetic
atoms (two-thirds of the Mn2 atoms), instead of a direct
effect of the magnetic field on a local magnetic moment.
Our results show that the spin texture of Mn5Si3 un-

der external magnetic field consists of a non trivial AFM
alignment of the Mn spins. As in the cases of Mn3Sn

1,2

and Mn3Ge3,41, one would expect that the noncollinear-
ity of the Mn moments in Mn5Si3 apart from the al-
ready discovered large anomalous Hall conductivity10

could also generate an anomalous Nernst effect. The
observation of an anomalous Nernst effect with thermo-
transport measurements, so far not reported for Mn5Si3,
would be extremely useful to provide a measure of the
Berry curvature at the Fermi level42 and to pave the way
for further studies in search of topological signatures.

C. Susceptible Mn1 moments under a magnetic
field

We have shown that our proposed model for the non-
collinear AFM1 phase of Mn5Si3 manages to qualitatively
reproduce all the phase transitions observed experimen-
tally in the B−T phase diagram. A central assumption of
the Heisenberg model is that the magnetic moments are
rigid against longitudinal variations, that is, their size is
unchangeable. This is reasonable for the Mn2 sites while
being more questionable for the Mn1 sites. In spite of
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FIG. 7. Model three-spin system. The spin in site 1 is
susceptible to variations in its spin length. An external field
is applied parallel to S1.

this, we showed that one can stabilize a collinear AFM2-
like phase by applying an external magnetic field while
considered rigid Mn1 magnetic moments. One open ques-
tion is whether the size of these moments can be affected
by the influence of an external field and what the mech-
anism is behind that.

We assume that the Mn1 magnetic moments are longi-
tudinally susceptible, i.e., the energy cost to change their
length is comparable to the other energy scales, such as
the exchange and Zeeman energies. Then, it could be
energetically favorable for the system to collapse a mag-
netic moment instead of having to deal with a group of
three or more moments frustrated due to the exchange
interaction.

To test this hypothesis, we consider a system of three
spins in an equilateral triangle coupled antiferromagneti-
cally, see Fig. 7. First, we recapitulate the results for the
case in which all three spins and their mutual interactions
are equivalent. The exchange interaction is described by:

HJ = −1

2

∑
ij

JijSi · Sj = JS2(2 cosα+ cosβ), (2)

where α and β are the angles between the corresponding
spins and we considered that Jij = −J ( with J > 0)
for all interactions. Thus, the exchange energy of a FM
alignment is 3JS2; for a state with two parallel spins and
another antiparallel, the energy is −JS2; and the energy
of a 120◦-state (Fig. 7 with α = β = 120◦) is −3JS2/2.
The latter state is clearly more favorable than the other
two states and is therefore the ground-state.

Now we relate this model to the situation found in
Mn5Si3 (see the black triangle in Fig. 1(d)). We consider
that two magnetic moments are rigid with respect to lon-
gitudinal variations (in analogy to the Mn2 moments in
Mn5Si3), while the third moment (for example, on site
1 in Fig. 7, relates to the Mn1 moment in Mn5Si3) is
susceptible and we model its potential energy with the
simplest quadratic form:

E(S1) =
1

2χ
(S1 − S0)

2, (3)

with χ > 0, such that there is an energy cost to increase
or decrease S1 from a reference value S0. The rigid spin

limit is obtained for χ → 0. Furthermore, we consider
that the coupling between S1 and the other two spins is
given by J ′ > 0 and can be different from J that couples
S2 to S3. We apply an in-plane magnetic field B parallel
to S1, as in Fig. 7 and then the Hamiltonian reads:

H = 2J ′SS1 cosα+ JS2 cos 2α

+
1

2χ
(S1 − S0)

2 −BS1 − 2BS cosα , (4)

where S2 = S3 = S, and we used the relation 2α+β = 2π
(the spins are assumed to always be in the same plane).
By minimizing the Hamiltonian with respect to S1, one

obtains that:

∂H
∂S1

= 0 → S1 = S0 + χ (B − 2J ′S cosα) . (5)

With respect to α, the stationary condition gives:

∂H
∂α

= 0 → cosα =
B − J ′S1

2JS
or sinα = 0 . (6)

The first solution minimizes the Hamiltonian while the
second, sinα = 0, gives two collinear states with spins 2
and 3 parallel to each other maximizing the Hamiltonian.
Assuming that sinα ̸= 0, we find:

S1 = a (S0 + bχB) where,

a =

(
1− χ

(J ′)2

J

)−1

and b =

(
1− J ′

J

)
. (7)

We are assuming that J, J ′, χ > 0, so a diverges for χ =
J/(J ′)2; and b = 0 for J ′ = J . Let us first consider the
case when a is positive (χ < J/(J ′)2). In this case, S1

is finite at zero field. For J ′ > J (b < 0), S1 reduces
linearly with the field; it remains constant if J ′ = J ; and
it increases for J ′ < J . Another interesting scenario is
for χ → ∞ (a → 0). In this case, S1 vanishes for zero
field. Then, it increases parallel or antiparallel to the
field depending on the sign of b.

IV. CONCLUSIONS

By combining INS measurements and DFT calcula-
tions we investigated the magnetic ground-state and spin
dynamics of the AFM1 phase of Mn5Si3. The exper-
imentally obtained spin excitation spectrum along the
three main crystal axes of the orthorhombic symmetry
at T = 10K is characterized by a spin gap of the order of
1meV, steep magnon dispersions and a low optic magnon
mode that originates at about 10meV. The INS results
can be well described by a Heisenberg Hamiltonian us-
ing six exchange interactions. In addition, our theoreti-
cal model suggests a noncollinear magnetic ground-state
for Mn5Si3, which is different from all the previous pro-
posed ones based on neutron diffraction data. According
to our model, the Mn1 spins are aligned mainly along
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the easy axis b, while the Mn2 spins have components in
the bc plane, which is a result of the magnetocrystalline
anisotropies of the system, that makes the bc plane the
most energetically favorable one. The existing contro-
versy in literature and our results demonstrate that the
magnetic ground state of Mn5Si3 needs to be reexam-
ined by employing modern polarized neutron diffraction
techniques.

Applying an external magnetic field parallel to the c
axis of the orthorhombic cell results in field induced tran-
sitions that are overall in qualitative agreement with the
experimentally established B − T phase diagram. Fur-
thermore, our paper supports the scenario of another
AFM phase at weak magnetic fields that has been hinted
to exist in previous studies. However, a clear phase
boundary between this phase and the already confirmed
AFM phases needs to be evidenced experimentally by
magnetization measurements on single crystals. Also
neutron diffraction studies on single crystals for differ-
ent magnetic fields at base temperature would be highly
desirable to investigate experimentally the spin texture
of all field induced transitions and compare them with
our results.

Finally, we attempt to elucidate the mechanism behind
the establishment of a collinear AFM2-like spin arrange-
ment due to an external magnetic field from a highly non-
collinear AFM1 phase at zero field. To this aim, we em-
ploy a theoretical model where we examine the stability

of a magnetic moment in a frustrated spin arrangement
and under the influence of a magnetic field. The proposed
model demonstrates that if one moment is sensitive to
longitudinal variations, then it can change its magnitude
under an external magnetic field. Therefore, our model
supports the scenario where Mn5Si3 under magnetic field
can acquire a collinear AFM2-like spin arrangement for
the Mn2 spins that coexist with non vanishing Mn1 mo-
ments.
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