
Contour Proposal Networks for Biomedical Instance Segmentation

Eric Upschultea,b,∗, Stefan Harmelingc, Katrin Amuntsa,d, Timo Dickscheida,b

aInstitute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
bHelmholtz AI, Research Centre Jülich, Germany

cInstitute of Computer Science, Heinrich Heine University, Düsseldorf, Germany
dCécile & Oscar Vogt Institute for Brain Research, University Hospital Düsseldorf, Germany

Abstract

We present a conceptually simple framework for object instance segmentation called Contour Pro-
posal Network (CPN), which detects possibly overlapping objects in an image while simultaneously
fitting closed object contours using an interpretable, fixed-sized representation based on Fourier
Descriptors. The CPN can incorporate state of the art object detection architectures as backbone
networks into a single-stage instance segmentation model that can be trained end-to-end. We con-
struct CPN models with different backbone networks, and apply them to instance segmentation
of cells in datasets from different modalities. In our experiments, we show CPNs that outperform
U-Nets and Mask R-CNNs in instance segmentation accuracy, and present variants with execu-
tion times suitable for real-time applications. The trained models generalize well across different
domains of cell types. Since the main assumption of the framework are closed object contours,
it is applicable to a wide range of detection problems also outside the biomedical domain. An
implementation of the model architecture in PyTorch is freely available.

1. Introduction

1.1. Motivation

Instance segmentation is the task of labeling each pixel in an image with an index that represents
distinct objects of predefined object classes. This is different from semantic segmentation, which
assigns the object class itself to each pixel, and does not distinguish objects of the same type if
their shapes touch or overlap. A common instance segmentation problem in biomedical imaging
is the detection of cells in microscopic images, in particular for quantitative analysis. While the
pixel accuracy of recent cell segmentation methods has become sufficient for many imaging setups,
detection accuracy often remains a bottleneck, especially wrt. handling of touching and overlapping
objects. In many biomedical applications, accurate object detection and realistic recovery of object
shape is both desirable. However, many instance segmentation methods define one unique object
index per pixel, referring to the foreground object only. This results in an incomplete capture of
partially superimposed objects, and consequently to a misrepresentation of their actual shape (as
in e.g. Fig. 4g top) which in turn might impair shape-sensible downstream tasks like morphological

∗Corresponding author: Tel.: +49-2461-61-5960; fax: +49-2461-61-3483;
Email address: e.upschulte@fz-juelich.de (Eric Upschulte)

ar
X

iv
:2

10
4.

03
39

3v
1

 [
cs

.C
V

]
 7

 A
pr

 2
02

1

Refinement Regression
(Sec. 2.3) 2 w1

h1

w2
h24N+2

Ba
ck

bo
ne

 C
N

N

Classification
(Sec. 2.1)

Contour Regression
(Sec. 2.2)

w1

h1

P1

w2
h2

P2

w2
h21

Lo
ca

l R
efi

ne
m

en
t (

Al
g.

1)

N
M

S
(S

ec
. 2

.4
)

Pr
op

os
al

Sa
m

pl
in

g

Co
nv

er
sio

n
to

Pi

xe
l S

pa
ce

Figure 1: The Contour Proposal Network (CPN) setup for instance segmentation. An initial backbone network
computes feature maps P1 and P2. Based on the low-resolution P2 a classification head determines for each pixel
if an object is present or not, while the contour regression heads generate object contours, defined in the frequency
domain, at each pixel. All contour representations that are classified to represent an object are extracted and
converted to pixel space using Eq. 1. The high-resolution P1 is used to regress a refinement tensor that is used
during a Local Refinement step (Alg. 1) that maximizes pixel accuracy. Finally, non-maximum suppression (NMS)
is applied to remove redundant detections.

cell analysis. To avoid such problems, instance segmentation methods with appropriate modeling
of object boundaries are required.

Furthermore, segmentation models should generalize well to variations in the data distribution.
This is important for small variations, which inevitably occur in practical lab settings due to
variations between different samples, fluctuations of histological protocols and digital scanning
processes [Stacke et al., 2019, Yagi, 2011]. Generalizability is also important at the scale of data
domains, in order to allow transfer of trained models with manageable annotation efforts.

1.2. Related work

Pixel classifiers. Instance segmentation can be achieved using a dense pixel classifier such as the
U-Net [Ronneberger et al., 2015], and can be casted from a semantic segmentation solution to an
instance-agnostic approach using a grouping strategy such as connected component labeling (CCL).
This will group multiple pixels of the same class into non-overlapping instances. To distinguish
touching instances as well, one may introduce narrow background gaps between objects with careful
per pixel loss weightings [Ronneberger et al., 2015]. Improved versions define border pixels as an
additional class [Chen et al., 2016, Guerrero-Pena et al., 2018, Zabawa et al., 2020]. Such models
have demonstrated to segment the borders of isolated objects very precisely. However, in case of
crowded images, already a few falsely classified pixels can merge close-by instances and critically
impair the detection result [Caicedo et al., 2019].

Pixel classifiers coupled with shape models. To reach better robustness on crowded images, some au-
thors proposed to couple active contour models with CNN-based segmentation models. Thierbach
et al. [2018] first employed a dense pixel classifier to predict probability maps of object centroids.
These maps were then thresholded to initialize a subsequent active contour segmentation. Zhang
et al. [2018] suggested a scheme where a CNN is trained to explicitly predict the energy function
for fitting an active contour model to a given object. The contour computation is here attached as
a black box to the learning loop, so that the conversion from pixel to shape space and back is in-
visible to the network training, and thus not part of the actual learning. Gur et al. [2019] proposed
to use a neural renderer as a differentiable domain transition from polygon to pixels, allowing a
full learning path. This way they train a U-Net-like CNN that produces 2D displacement fields for

2

polygonal contour evolution with a loss that addresses the segmentation as well as ballooning and
curvature minimizing forces in the pixel domain. While this allows end-to-end training, the actual
boundary representation remains hidden and is not accessible to downstream tasks.

Dense vs sparse detectors. The above-mentioned solutions have in common that they learn object
masks in the pixel domain under a hidden or decoupled shape model, producing a dense classifica-
tion by assigning a label to each pixel of an image. An alternative is to perform object detection
by directly estimating the parameters of a contour model in its embedding space, and attaching a
pixel location to the shape descriptor. This way the bounds of an entire object are concentrated
at a single pixel, leading to a sparse detection scheme and forcing the model to develop an ex-
plicit internal understanding of instances. For closed contours, pixel masks can then be obtained
by rasterization. Giving direct emphasis (and possibly supervision) to the shape model, such an
approach could provide a more interpretable and efficient problem representation.

Bounding box regression. The de-facto standard for modeling boundaries in object detection net-
works are bounding boxes [Ren et al., 2017, Liu et al., 2016, Lin et al., 2017b, Redmon and Farhadi,
2018, Bochkovskiy et al., 2020, Yang et al., 2020]. Here, the models predict at least four outer-
most object locations. This approach captures little information about the object instance beyond
location, scale and aspect ratio [Jetley et al., 2017]. The most established approach from this
category is the Mask R-CNN [He et al., 2017]. It first detects bounding boxes by regression, and
then gathers image features inside the bounding box to produce pixel masks.

Regression of shape representations. More detailed shape representations have been proposed in
recent years as well [Jetley et al., 2017, Schmidt et al., 2018, Miksys et al., 2019, Xie et al., 2020].
Closest to our work is the approach of Jetley et al. [2017], who combined the popular YOLO
architecture [Redmon et al., 2016] with an additional regression of a decodable shape representation
for each object proposal. They showed that integration of a higher-order shape reasoning into
the network architecture improves generalization. In particular, it allowed to predict plausible
masks for previously unseen object classes. They evaluated three different shape representations,
namely fixed-sized binary shape masks, a radial representation, and a learned shape encoding. The
binary shape masks show quantitatively worse results than the other two representations. The
radial representation defines a series of offsets between an anchor pixel and points on its contour,
and turned out to be inferior for common object classes in natural images. It has also been
applied for cell nuclei detection in the StarDist architecture [Schmidt et al., 2018], which showed
good detection accuracy but stays behind the pixel precision achieved by U-Nets [Ronneberger
et al., 2015]. StarDist was extended as PolarMask [Xie et al., 2020] to be applicable to multiclass
problems, such as the COCO dataset [Lin et al., 2014]. Also it was coupled with a different loss
and evaluated with multiple backbone architectures. In general, the applicability of the radial
model is limited to the ”star domain”, which excludes many non-convex shapes [Dietler et al.,
2020]. Predicting radial representations also involves a predefined number of rays, leading to
possibly suboptimal sampling and limited precision of the contour [Schmidt et al., 2018]. As a
third representation, [Jetley et al., 2017] train an auto-encoder on the Caltech-101 silhouettes
dataset to learn a shape embedding for the detection network. Miksys et al. [2019] extended this
approach with an additional distance transform acting as a proxy between decoder and shape
image, which allows to superimpose ”discs” at every pixel location and hence mitigate the impact
of falsely predicted pixels. They also considered the inclusion of the decoder in the training process,
and showed quantitative improvements. However, this model still lacks optimal pixel precision.

3

1.3. The Contour Proposal Network

Based on existing strengths and weaknesses in the field, we here introduce the Contour Proposal
Network (CPN). Similar in spirit to the approach of Jetley et al. [2017], it models instance seg-
mentation as a sparse detection problem by performing regression of object shape representations
at single pixel locations. The model architecture is depicted in Fig. 1: A backbone network derives
feature maps from an input image. For each pixel of the feature map, regression heads generate
a contour representation, while a classification head determines whether an object is present at a
given location. Based on the classifications, a proposal sampling stage then extracts a sparse list
of contour representations. By converting these to the pixel domain using the fully differentiable
Fourier sine and cosine transformation, we implicitly enforce the contour representations to be
defined in the frequency domain, inspired by Elliptical Fourier Descriptors [Kuhl and Giardina,
1982]. The resulting contour coordinates are optimized by a local refinement procedure to further
maximize pixel precision using a residual field, produced from an additional regression head. This
is similar in spirit to the displacements fields used by Gur et al. [2019], but integrates more nat-
urally as the CPN already operates with near-final contour proposals in the pixel domain at this
stage. The complete framework is trained end-to-end across all these stages. As a final inference
step, non maximum suppression removes redundant detections from the object proposals.

We train CPNs, that outperform U-Nets and Mask R-CNNs in instance segmentation accuracy
in our experiments and demonstrate that inference speed of selected CPNs is suitable for real-time
applications, especially when considering automatic mixed precision (amp). The trained models
generalize well to other datasets which cover different families of biological cells.

2. Methods

The Contour Proposal Network (CPN) uses five basic building blocks (Fig. 1). Initially, dense
feature maps P1 ∈ Rw1×w1×c1 (high-resolution) and P2 ∈ Rw2×w2×c2 (low-resolution) are generated
by a backbone CNN which can be freely chosen. From the latent feature map P2, a classifier head
detects objects, while parallel regression heads jointly generate explicit contour representations.
The classification scores generated by the classifier estimate whether an object exists at the given
locations. Contours are modelled as a series of 2d coordinates by applying the Fourier sine and
cosine transformation of degree N to the latent outputs of the contour regression head, resulting in
a fully differentiable, fixed-sized format for boundary regression (Sec. 2.2). The contour proposals
are a dense map on the pixel grid, with an h2 ×w2 × (4N + 2) tensor of shape descriptors and an
h2 × w2 × 1 tensor of corresponding object classification scores. The output resolution h2 × w2 is
independent of the input resolution and effectively defines the maximum number objects that can
be detected. All representations that are deemed to describe a present object are extracted as a list
of contour proposals and mapped to pixel space using Eq. 1. The proposals are then processed by
a trainable refinement block to maximize fit of contours with image content using high-resolution
features P1. The last building block filters redundant detections using non-maximum suppression.

2.1. Detection

A classification head produces a detection score for each contour representation and states
whether it represents a present object or not. In our work we focus on the binary case and do not
distinguish different object categories.

4

(a) N = 1, 6d vector (b) N = 3, 14d vector (c) N = 8, 34d vector

Figure 2: Contour representation with different settings of the order hyperparameter N . It defines the vector size of
the descriptor that is given by 4N+2. The higher the order, the more detail is preserved. The 2d contour coordinates
are sampled from the descriptor space with Eq. 1. Even small settings of N yield good approximations of odd and
non-convex shapes, in this case human neuronal cells, including a curved apical dendrite.

2.2. Contour Representation

Following Kuhl and Giardina [1982], we define a contour of degree N as a series of 2d co-
ordinates (xN (t1), yN (t1)), . . . (xN (tS), yN (tS)) with ts < ts+1, using the Fourier sine and cosine
transformation

xN (t) = a0 +
N∑
n=1

(
an sin

(
2nπt

T

)
+ bn cos

(
2nπt

T

))

yN (t) = c0 +
N∑
n=1

(
cn sin

(
2nπt

T

)
+ dn cos

(
2nπt

T

)) (1)

For legibility we omit the subscript of xN and yN in the following. The evolution of the x-
coordinate along the contour x(t) is parameterized by two series of coefficients a = a0, a1, . . . aN and
b = b1, . . . bN , with a0 determining the spatial offset of the contour on the pixel grid. Accordingly,
y(t) is parameterized by coefficients c and d. The parameter vector [a, b, c d] ∈ R4N+2 hence
determines a 2D object contour. The location parameter ts ∈ [0, 1] with interval length T = 1
determines at which fraction of the contour a coordinate is sampled. The order hyperparameter N
determines the smoothness of the contour, with larger N adding higher frequency coefficients and
thus allowing closer approximations of object contours (Fig. 2). This formulation always produces
closed contours. It is differentiable, and both the contour representation and the sampled contour
coordinates are fixed in size, given an order N and a sample size S. Thus, we can directly regress
the parameters of this representation to predict closed object contours with convolutional neural
networks.

The CPN employs two separate regression heads for predicting contour shape
{ ai, bi, ci, di | 1 ≤ i ≤ N } and localization in the image (a0, c0). By isolating regression of shape
and location, we intend to preserve translational invariance of the contour representation and
equivariance of the offset regression.

2.3. Local Refinement

To maximize the pixel-precision of estimated contours, we propose a local refinement of pre-
dicted contour coordinates in the pixel domain as defined in Alg. 1. Using an additional regres-
sion head we generate a two channel feature map v which represents a 2D residual field on the
pixel grid. We correct each rounded contour proposal coordinate bx(t)e, by(t)e using its residual

5

(a) Refinement tensor v (b) Refinement: before (blue), after (green)

Figure 3: Local refinement example. 3a illustrates the learned refinement tensor v as a vector field, superimposed
with the input image. 3b shows a contour proposal before and after refinement. The refinement tensor learned to
shift contour coordinates to maximize pixel-precision. (Best viewed in color)

σ tanh
(
vbx(t)e,by(t)e

)
, with σ as the maximum correction margin, minimizing the distance between

estimated and actual contour coordinate.1 This correction can be applied multiple times by reusing
v at updated pixel coordinates. Fig. 3 shows an example. A contour coordinate has reached its
final position once v yields an offset of zero for all spatial dimensions at a given location. The
combination of correction margin σ and the number of iterations limits the influence that the
refinement may have on the final result. The local refinement reduces localization errors of the
contour regression and can compensate the exclusion of higher contour frequencies by choosing
small values for the order hyperparameter N . Such a refinement becomes tractable since the CPN
directly outputs boundary coordinates - in fact the procedure can be efficiently implemented using
fancy indexing. The prediction of the refinement tensor v is trained implicitly by minimizing the
distance between refined contour coordinates and ground truth coordinates in pixel space.

2.4. Non-Maximum Suppression

Similar to other object detection methods (He et al. [2017], Redmon et al. [2016], Lin et al.
[2017b]) the CPN generates dense proposals, thus multiple pixels of the produced output grid may
represent the same object. To remove redundant detections during inference, we apply bounding-
box non-maximum suppression (NMS). NMS specifically keeps proposals with a high detection
score, but suppresses proposals with lower scores and a bounding box IoU (Intersection over
Union) that exceeds a given threshold. As the CPN outputs lists of contour coordinates, we can

1Note that the use of rounded coordinates prevents contour proposal heads from being influenced by the refinement
head during training. Also the rounding provides a consistent starting point for the refinement.

6

Algorithm 1 Local Refinement. Iteratively refine a contour coordinate x, y using refinement
tensor v ∈ Rw×h×2 and maximum correction margin σ, assuming 1 ≤ x ≤ w and 1 ≤ y ≤ h.
Rounding is denoted by b·e.

1: procedure Refine(x, y, v, r, σ)
2: for r iterations do
3:

[
x y

]
←
[
bxe bye

]
+ σ tanh

(
vbxe,bye

)
return x, y

define bounding boxes very efficiently for each contour proposal (x(t1), y(t1)), . . . (x(tS), y(tS)) as
b = [minx(t),min y(t),maxx(t),max y(t)].

2.5. Loss functions

We define objectives for two components: Detection score and contour prediction. For legibility
we present objectives per pixel.

Detection score. The detection head performs binary classification for each pixel, producing a score
that states whether an object instance is present or not at the pixel location. The loss Linst for
this task is the standard Binary Cross Entropy (BCE).

Contour Coordinate Loss. At each pixel where a contour should be attached, we apply a loss that
minimizes the distance between ground truth contour coordinates and estimated coordinates. For
a single coordinate it is given by

Lcoord(x, y, x̂, ŷ) =
1

2
(|x− x̂|1 + |y − ŷ|1) (2)

The contour proposal prediction is trained using

Lcontour =
1

S

S∑
s=1

Lcoord(x(ts), y(ts), x̂(ts), ŷ(ts)) (3)

with ground truth contour coordinate x(ts), y(ts) and estimated x̂(ts), ŷ(ts), at random positions
ts ∈ [0, 1]. Coordinates are defined as in Eq. 1 given targets a, b, c,d and estimates â, b̂, ĉ and d̂.
Local refinement is trained accordingly with

Lrefine =
1

S

S∑
s=1

Lcoord

(
x(ts), y(ts),Refine(x̂(ts), ŷ(ts))

)
(4)

substituting x̂(ts), ŷ(ts) with refined coordinates using Alg. 1.

Representation Loss. Additionally, we can directly supervise the shape parameters in the frequency
domain using

Lrepr = |β � (a− â)|1 + |β−0 � (b− b̂)|1 + |β � (c− ĉ)|1 + |β−0 � (d− d̂)|1 (5)

with β−0 denoting the exclusion of β0 from β = [β0, . . . βN]. While the objective is already well
defined without this representation loss, it provides additional regularization of the shape space
and enables to emphasize specific detail levels by applying individual factors βn. An intuitive
setting decreases βn with growing n to put more relative emphasis on the coarse contour outlines
represented by low frequency coefficients.

7

(a) (b) (c) (d) (e) (f) (g) (h)

A
n
n
ot
at
io
n

C
P
N

R
4
-U

2
2

(p
ro
p
os
ed
)

U
-N

e
t

M
a
sk

R
-C

N
N

In
p
u
ts

Figure 4: Example patches from different datasets with reference annotations (5th row) and detections computed by
the proposed CPNR4-U22 (4th row), U-Net (3rd row) and Mask R-CNN (2nd row) models.

CPN Loss. Combining the components above, the overall per pixel loss is given by

LCPN = Linst(o) + o(Lcontour + Lrefine + λLrepr) (6)

with o = 1 for pixels that represent an object and o = 0 otherwise.

3. Experiments and results

We evaluate the instance segmentation performance of the CPN on three datasets (NCB,
BBBC039, SYNTH) and compare the results with U-Net and Mask R-CNN as baseline models.
Also, the cross-dataset generalization performance is examined by training models on BBBC039
and testing them on a fourth dataset, BBBC041. To better understand the effects of employing
the CPN feature space, this experiment includes a U-Net that is first trained as part of a CPN.
Finally, we compare inference speeds of different models.

3.1. Datasets

NCB - Neuronal Cell Bodies. This dataset consists of 82 grayscale image patches from microscopic
scans of cellbody-stained brain tissue sections, with annotations of approximately 29,000 cell bod-
ies. Fig. 5a shows examples. It includes significant variations in cell shape, intensity, and object
overlap, as well as challenging configurations like occlusions, noise, varying contrast and histolog-
ical artifacts. Brain samples come from the body donor program of the Anatomical Institute of

8

(a) NCB (b) BBBC039 (c) SYNTH (d) BBBC041

Figure 5: Examples from the used datasets (Sec. 3.1).

Düsseldorf in accordance with legal and ethical requirements2. Tissue sections were stained using
a modified Merker stain [Merker, 1983]. Each tissue section has an approximate thickness of 20
µm and is captured with a resolution of 1 µm using a high-throughput light-microscopic scanner
(TissueScope HS, Huron Digital Pathology Inc.). Note that cell bodies in this dataset are always
continuously and fully annotated even under occlusions, in order to allow a model to learn mostly
realistic morphologies. Image patches were manually labeled for cell body instances by a group of
experts in our institute. This was performed using a custom web-based annotation software, which
allowed to enter overlapping pixel labels and to inspect the 3d context provided by depth focusing.
To minimize highly subjective annotations of ambiguous cases, the software includes collaborative
feedback features that allow consensus among multiple experts during annotation. The complete
dataset will be publicly available on the EBRAINS3 platform.

BBBC039 - Nuclei of U2OS cells in a chemical screen. This is a dataset from the Broad Institute
Bioimage Benchmark Collection [Ljosa et al., 2012]. It consists of 200 grayscale images from a
high-throughput chemical screen on U2OS cells, depicting approximately 23,000 annotated nuclei.
Fig. 5b shows examples.

BBBC041 - P. vivax (malaria) infected human blood smears. Also from the Broad Bioimage
Benchmark Collection [Ljosa et al., 2012], this dataset consists of 1364 images depicting approxi-
mately 80, 000 Malaria infected human blood smear cells, annotated with bounding boxes. Fig. 5d
shows examples.

SYNTH - Synthetic shapes. This dataset consists of 4129 grayscale images that show a large va-
riety of different synthetic shapes in different sizes. It contains approximately 1,305,000 annotated
objects. Fig. 5c shows examples. Shapes include simple structures, such as circles, ellipses and
triangles, as well as more complex non-convex structures. Objects and background vary in intensity

2ethics approval #4863
3https://ebrains.eu

9

https://ebrains.eu

and texture, with objects showing mostly darker intensities than background. Similar to the NBC
dataset mentioned above, objects can overlap and are fully annotated, even if occluded. Thus a
single pixel can belong to more than one instance.

3.2. Baseline Methods

We evaluate performance against the same baseline methods used in Schmidt et al. [2018].

• U-Net [Ronneberger et al., 2015] is an encoder-decoder network with lateral skip-connections
and a de-facto standard for biomedical image segmentation (cf. Sec. 1.2). In addition to
its original definition we use batch normalization after each convolutional layer. Following
Caicedo et al. [2019] the network classifies each pixel into one of three classes: cell, background
and boundary.

• Mask R-CNN [He et al., 2017] is a widely used instance segmentation method that proposes
bounding boxes for each object, filters proposals by non maximum suppression and finally
produces masks based on proposed bounding box regions (cf. Sec. 1.2). The implementation
used in our experiments is based on torchvision, a Python package that includes popular
model architectures and is part of PyTorch.

3.3. CPN Training

For comparability, we instantiate CPN models with the same backbone architectures as the
baseline models, and train them with the same number of epochs, data size, batch size and data
augmentation. In particular, we use four CPN variants:

• CPNR4-R50-FPN uses a Feature Pyramid Network (FPN) [Lin et al., 2017a] with a 50 layer
residual architecture [He et al., 2016, ResNet-50] as its backbone and applies 4 iterations of
contour refinement (Sec. 2.3)

• CPNR0-R50-FPN is CPNR4-R50-FPN with contour refinement disabled

• CPNR4-U22 uses a 22 layer U-Net as a backbone, which is setup like the baseline described
in Sec. 3.2, but omitting its final output layer. It uses 4 iterations of contour refinement

• CPNR0-U22 is CPNR4-U22 with contour refinement disabled

For assessing inference speed, we will use additional backbone architectures (Sec. 3.6).
We supervise both the contour representation and the sampled contour coordinates. As the

contour representation is well defined, we calculate ground truth representations on the fly and use
them to guide the network during training. Using Eq. 1 with uniform sampling t1, . . . tS (ts ∈ [0, 1])
we retrieve contour coordinates from both ground truth and prediction for supervision. The sample
size hyperparameter S influences precision and performance by fixing the number of coordinates
used during training. We choose S = 64 here.

While it is also possible to use the derivable and non-parametric formula from Kuhl and Giar-
dina [1982] to derive the contour representation from another latent space, we did not observe any
benefits and thus omit this possibility.

10

Table 1: Instance segmentation results for selected datasets and methods. The F1 score F1τ=0.60 is reported for
a range of intersection over union (IoU) thresholds τ and as the average F1avg = 1/9

∑
τ∈T F1τ for thresholds

T = (0.5, 0.55, 0.6, . . . 0.9).

Model Backbone F1avg F1τ=0.5 F1τ=0.6 F1τ=0.7 F1τ=0.8 F1τ=0.9

Neuronal Cell Bodies

CPNR4-U22 U-Net 0.55 0.80 0.74 0.62 0.40 0.10
CPNR0-U22 U-Net 0.51 0.80 0.73 0.58 0.33 0.05
CPNR4-R50-FPN ResNet-50-FPN 0.43 0.74 0.65 0.49 0.23 0.02
CPNR0-R50-FPN ResNet-50-FPN 0.42 0.73 0.64 0.48 0.22 0.02
U-Net U-Net 0.47 0.71 0.63 0.51 0.33 0.10
Mask R-CNN ResNet-50-FPN 0.34 0.70 0.55 0.34 0.11 0.00

BBBC039

CPNR4-U22 U-Net 0.91 0.96 0.95 0.93 0.91 0.76
CPNR0-U22 U-Net 0.90 0.96 0.95 0.93 0.90 0.72
CPNR4-R50-FPN ResNet-50-FPN 0.90 0.95 0.94 0.93 0.90 0.74
CPNR0-R50-FPN ResNet-50-FPN 0.90 0.95 0.94 0.93 0.89 0.71
U-Net U-Net 0.89 0.95 0.93 0.92 0.88 0.71
Mask R-CNN ResNet-50-FPN 0.86 0.94 0.93 0.92 0.89 0.52

Synthetic Shapes

CPNR4-U22 U-Net 0.90 0.98 0.98 0.96 0.89 0.64
CPNR0-U22 U-Net 0.89 0.98 0.98 0.96 0.88 0.51
CPNR4-R50-FPN ResNet-50-FPN 0.88 0.98 0.97 0.94 0.86 0.54
CPNR0-R50-FPN ResNet-50-FPN 0.86 0.98 0.97 0.94 0.84 0.47
U-Net U-Net 0.87 0.96 0.95 0.92 0.85 0.59
Mask R-CNN ResNet-50-FPN 0.85 0.96 0.90 0.85 0.72 0.36

3.4. Detection and segmentation performance

To evaluate the detection performance and the shape quality of the produced contours we use
the harmonic mean of precision and recall F1τ = TPτ

TPτ+ 1
2

(FPτ+FNτ)
for different Intersection over

Union (IoU) thresholds τ . The IoU threshold τ ∈ [0, 1] defines the minimal IoU that is required
for two shapes to be counted as a match. Each ground truth shape can be a match for at most one
predicted shape. A True Positive (TP) is a predicted shape that matches a ground truth shape, a
False Positive (FP) is a shape that does not match any ground truth shape and a False Negative
(FN) is a ground truth shape that does not match any predicted shape. F1τ scores with a small
τ = 0.5 quantify the coarse detection performance of a model, yielding good scores if the model
correctly infers object presence along with a roughly matching contour. F1τ scores with a larger
τ = 0.9 quantify the fine detection performance, allowing little deviance from the target shape.
We define F1avg = 1/9

∑
τ∈T F1τ for thresholds T = (0.5, 0.55, 0.6, . . . 0.9), to measure the average

performance for different thresholds.
Tab. 1 shows quantitative results of the CPN, U-Net and Mask R-CNN on three different

datasets. The CPN with local refinement yields highest scores on all datasets. Local refinement
further increases the average F1 scores, especially for high thresholds τ , thus increasing the quality

11

Table 2: Cross-dataset evaluation of object detection performance. We report F1 scores for models trained on
BBBC039 dataset and tested on BBBC041 dataset. Results are based on bounding boxes using same metrics as
Tab. 1. The pretrained U-Net was trained as part of CPNR4-U22.

Model Backbone F1avg F1τ=0.5 F1τ=0.6 F1τ=0.7 F1τ=0.8 F1τ=0.9

CPNR4-U22 U-Net 0.54 0.83 0.81 0.70 0.29 0.02
U-Net Pretrained U-Net 0.52 0.72 0.71 0.67 0.39 0.07
U-Net U-Net 0.45 0.62 0.60 0.57 0.33 0.06
Mask R-CNN ResNet-50-FPN 0.49 0.77 0.75 0.66 0.24 0.02

(a) Annotation (b) CPNR4-U22 (c) U-Net (d) Mask R-CNN

Figure 6: Cross-dataset generalization examples from three different models. The models were trained on BBBC039
and applied to images from BBBC041 without retraining or adaptation. Two samples are depicted above.

of the contours as expected. On the datasets BBBC039 and SYNTH CPNR4-U22 outperforms
the baseline models for all thresholds.

3.5. Cross-dataset generalization

We assessed how well the baseline and CPN models generalize to variations in the input data
distribution as follows: Models are trained for instance segmentation on the BBBC039 dataset.
Without any retraining or adaptation, models are then applied to BBBC041. Generalization
capabilities are then evaluated with the F1 score on the basis of bounding boxes derived from the
respective instance segmentation results. This provides a quantitative characterization of detection
and segmentation performance under transfer to different data domains. To comply with the basic
characteristics of BBBC039, we converted the images to inverted grayscale images and applied a
fixed contrast adjustment and downscaling.

Results are shown in Tab. 2. CPN models consistently show higher scores than baseline meth-

12

Table 3: Inference speeds of different models. We report the number of frames per second (FPS) for the BBBC039
test set with an image size of 520× 696. We measure times with single-precision (float32) and and automatic mixed
precision (amp). The initial run and possible post-processing steps are excluded. All models were implemented and
executed as PyTorch models on an NVIDIA A100. We denote ResNet by ’R’, ResNeXt by ’X’ and U-Net by ’U’ for
brevity.

Model FPS FPS (amp)

CPNR0-R50-FPN 30.19 37.57
CPNR4-R50-FPN 29.86 36.17
CPNR4-X50-FPN 27.20 36.83
U-Net 23.42 77.71
CPNR4-U22 (P2 stride 2) 15.41 42.20
Mask R-CNN-R50-FPN 13.74 -
CPNR4-X101-FPN 13.39 25.66
CPNR4-U22 12.71 26.72

ods. For small IoU thresholds such as τ = 0.50, the scores of CPN and Mask R-CNN models are
particularly distinguished from U-Net. Fig. 6 shows detected instances from different methods on
two typical examples, illustrating the problems in cross-dataset generalization. CPNR4-U22 tends
to detect conservatively, preferring some false negatives for avoiding false positives. U-Net shows
more false positives, sometimes seemingly detecting noise. For Mask R-CNN, contours are less
precise than for the others, and overall less true instances are detected.

Reusing trained CPN backbones for different tasks. We also examined the generalization perfor-
mance of a U-Net when its encoder and decoder are trained as the backbone of CPNR4-U22,
and then reused with a new final prediction layer in a U-Net to output segmentation results. For
retraining, the encoder part is frozen, to ensure that the CPN feature space is kept intact. This
case is reported in the second row of Tab. 2. All scores are significantly higher compared to the
U-Net without such pre-training. For high IoU thresholds, e.g. τ ∈ {0.8, 0.9}, this variant even
provides overall highest scores. However, as the generalization performance increased, the F1avg

score on the BBBC039 test set dropped from 0.89 to 0.87.

3.6. Inference speed

We computed the number of frames per seconds (FPS) on the BBBC039 test set for different
models. Each image has a size of 520 × 696. To improve the precision of the measurement we
reiterated over the test set multiple times. Pre- and post-processing steps were excluded from
the timings, as well as initial warm-up runs. This experiment was performed in single-precision
(float32) and automatic mixed precision (amp) via PyTorch’s autocast feature. The latter auto-
matically selects CUDA operations to run in half-precision (float16) to improve performance while
aiming to maintain accuracy.

Results are presented in Tab. 3. In terms of inference speed, CPNR4-R50-FPN outperforms
both Mask R-CNN-R50-FPN and U-Net when applied with normal single-precision (float32).
As this CPN reached 29.9 FPS, it qualifies for many online video processing applications. When
applied with automatic mixed precision (amp) the CPNR4-U22, that uses a stride of 2 in the
classification and regression head, achieved 42.2 FPS - the highest performance of the tested CPN

13

models and the second highest overall performance among the tested models. U-Net, which shares
the same backbone, showed the best inference speed performance using amp.

The influence of local refinement on inference speed was evaluated for the R50-FPN based
CPN, for which four refinement iterations reduced the result by 0.33 FPS, when used with single-
precision (float32).

4. Discussion and conclusion

We proposed the Contour Proposal Network (CPN), a framework for segmenting object in-
stances by proposing contours which are encoded as interpretable, fixed-sized representations based
on Fourier Descriptors. CPN models can be constructed with different backbone CNN architectures
to produce image features. We assessed the performance of four different CPN variants, employing
both U-Net and ResNet-FPN backbones, against a standard U-Net and Mask R-CNN as baseline.
All U-Net based CPNs outperformed the U-Net counterpart in terms of F1avg instance segmenta-
tion performance on all three tested datasets, both with and without local refinement. Given that
CPN and U-Net share the same backbone architecture U22, the results indicate that the CPN
provides a more effective problem description. This is also supported by the comparison of the
CPN and Mask R-CNN in our experiments. For both tested backbone architectures, the CPNs
show consistently higher F1avg than Mask R-CNN-R50-FPN.

The CPN models employ a highly entangled representation of object shapes and sparse detec-
tions: The networks are effectively forced to concentrate the description of a complete object into a
single pixel by anchoring the boundary representation to a specific coordinate. This requires them
to form an intrinsic spatial relationship between whole objects and their parts, which encourages
compact and robust representations with good generalization properties. This principle shares
some commonalities with Capsule Networks [Sabour et al., 2017], which also aim to condense in-
stances of objects or object parts into vector representations coupled with a detection score. The
effects can be observed when looking at examples as depicted in Fig. 4: If boundaries are invisible
or poorly defined, CPN models exploit the learned knowledge of boundary shapes to find highly
plausible separations (e.g. Fig. 4 e, g, h). Very small and touching objects, which are often overseen
by pixel-based methods, are well detected (e.g. Fig. 4 a, b). Separation of clusters of kissing objects
is typically modelled quite accurately, reproducing gaps between touching shapes very consistently
(e.g. Fig. 4 c, d). Thin structures, such as dendrites, can be modeled accurately (e.g. Fig. 4f).
Discontinuities that may occur with pixel-based methods can be avoided, as proposed contours are
continuous and closed by design.

While leading to accurate object representations, experiments on cross-dataset generalization
showed that the learned shape priors are not overly restrictive and transfer well to different data
distributions. Even more, the CPN models are able to produce plausible contours for previously
unseen objects as long as their basic morphology is consistent with the training examples. In
particular the F1τ=0.50 margin between CPNR4-U22 and U-Net of 0.21 suggests that the better
performing CPN formed a more universal intrinsic understanding of what an instance is. In this
context, we also observed that the CPN and its objective have a positive influence on the backbone
CNNs to produce a feature space with good generalization properties - a pixel-classifying U-Net
showed significantly better performance on our cross-dataset evaluation when its encoder and
decoder were trained as a CPN backbone.

By modeling the contour representation in the frequency domain, CPNs can bypass several
sampling problems occurring in previous works, like selecting the optimal sampling rate in pixel

14

space. Instead, by setting the order of the Fourier series, the user can specify different levels of
contour complexity in a natural way. Furthermore, the representation allows to generate arbitrary
output resolutions without compromising detection accuracy.

The local refinement step, which is an integrated and fully trainable part of the CPN, supports
contour proposals to achieve high pixel precision despite the regularization imposed by the shape
model. We measured a notable increase in performance for high IoU thresholds when applying
refinement, indicating that high contour frequencies can be modeled efficiently using a residual
field. While the refinement can improve contour details, it only had a minor influence on inference
speed in our experiment. We see the refinement as an important complementary module of the
CPN framework.

In terms of inference speed, CPNR4-R50-FPN outperforms all other tested methods when ap-
plied with normal single-precision (float32). With 29.9 FPS it is even suitable for online processing
tasks, especially as it produces ready-to-use object instance descriptions, not requiring additional
post-processing steps like connected component labeling. The experiments also showed that local
refinement adds little time overhead, in the case of R50-FPN based CPN four refinement iter-
ations increased pixel-precision while costing less than half a frame per second. For automatic
mixed precision CPNR4-U22 with strided heads showed fasted inference speed among all CPNs
with 42.2 FPS.

Since the only assumption of the proposed approach are closed object contours, it is applicable
to a wide range of detection problems, also outside the biomedical domain that have not been
investigated in the present work.

An implementation of the model architecture in PyTorch is available at https://github.com/
FZJ-INM1-BDA/celldetection.

Acknowledgments

This project received funding from the European Union’s Horizon 2020 Research and Innova-
tion Programme, grant agreement 945539 (HBP SGA3), and Priority Program 2041 (SPP 2041)
”Computational Connectomics” of the German Research Foundation (DFG). Computing time was
granted through JARA-HPC on the supercomputer JURECA at Juelich Supercomputing Centre
(JSC) as part of the project CJINM14.

References

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal speed and accuracy of object detection, 2020.
J. C. Caicedo, J. Roth, A. Goodman, T. Becker, K. W. Karhohs, M. Broisin, C. Molnar, C. McQuin, S. Singh, F. J.

Theis, and et al. Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. Cytometry
Part A, 95(9):952–965, Sep 2019. ISSN 1552-4922, 1552-4930. doi: 10.1002/cyto.a.23863.

H. Chen, X. Qi, L. Yu, and P.-A. Heng. Dcan: Deep contour-aware networks for accurate gland segmentation, 2016.
N. Dietler, M. Minder, V. Gligorovski, A. M. Economou, D. A. H. L. Joly, A. Sadeghi, C. H. M. Chan, M. Koziński,

M. Weigert, A.-F. Bitbol, and S. J. Rahi. A convolutional neural network segments yeast microscopy images with
high accuracy. Nature Communications, 11(1):5723, Dec. 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-19557-4.
URL http://www.nature.com/articles/s41467-020-19557-4.

F. A. Guerrero-Pena, P. D. Marrero Fernandez, T. Ing Ren, M. Yui, E. Rothenberg, and A. Cunha. Multiclass
weighted loss for instance segmentation of cluttered cells. 2018 25th IEEE International Conference on Image
Processing (ICIP), Oct 2018. doi: 10.1109/icip.2018.8451187. URL http://dx.doi.org/10.1109/ICIP.2018.

8451187.
S. Gur, T. Shaharabany, and L. Wolf. End to end trainable active contours via differentiable rendering.

arXiv:1912.00367 [cs], Dec 2019. URL http://arxiv.org/abs/1912.00367. arXiv: 1912.00367.

15

https://github.com/FZJ-INM1-BDA/celldetection
https://github.com/FZJ-INM1-BDA/celldetection
http://www.nature.com/articles/s41467-020-19557-4
http://dx.doi.org/10.1109/ICIP.2018.8451187
http://dx.doi.org/10.1109/ICIP.2018.8451187
http://arxiv.org/abs/1912.00367

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778, June 2016. doi: 10.1109/CVPR.2016.90.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn. In 2017 IEEE International Conference on Computer
Vision (ICCV), page 2980–2988. IEEE, Oct 2017. ISBN 978-1-5386-1032-9. doi: 10.1109/ICCV.2017.322. URL
http://ieeexplore.ieee.org/document/8237584/.

S. Jetley, M. Sapienza, S. Golodetz, and P. H. S. Torr. Straight to shapes: Real-time detection of encoded shapes. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), page 4207–4216. IEEE, Jul 2017.
ISBN 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.448. URL http://ieeexplore.ieee.org/document/8099931/.

F. P. Kuhl and C. R. Giardina. Elliptic fourier features of a closed contour. Computer Graphics and Image Processing,
18:236–258, 1982.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco:
Common objects in context. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision –
ECCV 2014, pages 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature Pyramid Networks for Ob-
ject Detection. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 936–
944, Honolulu, HI, July 2017a. IEEE. ISBN 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.106. URL http:

//ieeexplore.ieee.org/document/8099589/.
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal loss for dense object detection. In 2017 IEEE

International Conference on Computer Vision (ICCV), page 2999–3007. IEEE, Oct 2017b. ISBN 978-1-5386-
1032-9. doi: 10.1109/ICCV.2017.324. URL http://ieeexplore.ieee.org/document/8237586/.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. SSD: Single Shot MultiBox
Detector, volume 9905 of Lecture Notes in Computer Science, page 21–37. Springer International Publishing,
2016. ISBN 978-3-319-46447-3. doi: 10.1007/978-3-319-46448-0 2. URL http://link.springer.com/10.1007/

978-3-319-46448-0_2.
V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter. Annotated high-throughput microscopy image sets for validation.

Nature Methods, 9(7):637–637, July 2012. ISSN 1548-7091, 1548-7105. doi: 10.1038/nmeth.2083. URL http:

//www.nature.com/articles/nmeth.2083.
B. Merker. Silver staining of cell bodies by means of physical development. Journal of Neuroscience Methods, 9(3):

235–241, Nov. 1983. ISSN 0165-0270. doi: 10.1016/0165-0270(83)90086-9.
L. Miksys, S. Jetley, M. Sapienza, S. Golodetz, and P. H. S. Torr. Straight to shapes++: Real-time instance

segmentation made more accurate, 2019.
J. Redmon and A. Farhadi. Yolov3: An incremental improvement, 2018.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), page 779–788. IEEE, Jun 2016.
ISBN 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.91. URL http://ieeexplore.ieee.org/document/7780460/.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, Jun 2017. ISSN
0162-8828, 2160-9292. doi: 10.1109/TPAMI.2016.2577031.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmenta-
tion, volume 9351 of Lecture Notes in Computer Science, page 234–241. Springer International Publishing,
2015. ISBN 978-3-319-24573-7. doi: 10.1007/978-3-319-24574-4 28. URL http://link.springer.com/10.1007/

978-3-319-24574-4_28.
S. Sabour, N. Frosst, and G. E. Hinton. Dynamic Routing Between Capsules. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, NIPS’17, pages 3859–3869, USA, 2017. Curran Associates
Inc. ISBN 978-1-5108-6096-4.

U. Schmidt, M. Weigert, C. Broaddus, and G. Myers. Cell Detection with Star-Convex Polygons, volume 11071 of
Lecture Notes in Computer Science, page 265–273. Springer International Publishing, 2018. ISBN 978-3-030-00933-
5. doi: 10.1007/978-3-030-00934-2 30. URL http://link.springer.com/10.1007/978-3-030-00934-2_30.

K. Stacke, G. Eilertsen, J. Unger, and C. Lundström. A closer look at domain shift for deep learning in histopathology.
CoRR, abs/1909.11575, 2019. URL http://arxiv.org/abs/1909.11575.

K. Thierbach, P.-L. Bazin, W. d. Back, F. Gavriilidis, E. Kirilina, C. Jäger, M. Morawski, S. Geyer, N. Weiskopf, and
N. Scherf. Combining Deep Learning and Active Contours Opens The Way to Robust, Automated Analysis of Brain
Cytoarchitectonics, volume 11046 of Lecture Notes in Computer Science, page 179–187. Springer International
Publishing, 2018. ISBN 978-3-030-00918-2. doi: 10.1007/978-3-030-00919-9 21. URL http://link.springer.

com/10.1007/978-3-030-00919-9_21.
E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and P. Luo. Polarmask: Single shot instance segmen-

16

http://ieeexplore.ieee.org/document/8237584/
http://ieeexplore.ieee.org/document/8099931/
http://ieeexplore.ieee.org/document/8099589/
http://ieeexplore.ieee.org/document/8099589/
http://ieeexplore.ieee.org/document/8237586/
http://link.springer.com/10.1007/978-3-319-46448-0_2
http://link.springer.com/10.1007/978-3-319-46448-0_2
http://www.nature.com/articles/nmeth.2083
http://www.nature.com/articles/nmeth.2083
http://ieeexplore.ieee.org/document/7780460/
http://link.springer.com/10.1007/978-3-319-24574-4_28
http://link.springer.com/10.1007/978-3-319-24574-4_28
http://link.springer.com/10.1007/978-3-030-00934-2_30
http://arxiv.org/abs/1909.11575
http://link.springer.com/10.1007/978-3-030-00919-9_21
http://link.springer.com/10.1007/978-3-030-00919-9_21

tation with polar representation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), page 12190–12199. IEEE, Jun 2020. ISBN 978-1-72817-168-5. doi: 10.1109/CVPR42600.2020.01221.
URL https://ieeexplore.ieee.org/document/9157078/.

Y. Yagi. Color standardization and optimization in Whole Slide Imaging. Diagnostic Pathology, 6(S1):S15, Dec.
2011. ISSN 1746-1596. doi: 10.1186/1746-1596-6-S1-S15. URL https://diagnosticpathology.biomedcentral.

com/articles/10.1186/1746-1596-6-S1-S15.
L. Yang, R. P. Ghosh, J. M. Franklin, S. Chen, C. You, R. R. Narayan, M. L. Melcher, and J. T. Liphardt. NuSeT:

A deep learning tool for reliably separating and analyzing crowded cells. PLOS Computational Biology, 16(9):
e1008193, Sept. 2020. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1008193.

L. Zabawa, A. Kicherer, L. Klingbeil, R. Töpfer, H. Kuhlmann, and R. Roscher. Counting of grapevine berries
in images via semantic segmentation using convolutional neural networks. ISPRS Journal of Photogrammetry
and Remote Sensing, 164:73–83, Jun 2020. ISSN 0924-2716. doi: 10.1016/j.isprsjprs.2020.04.002. URL http:

//dx.doi.org/10.1016/j.isprsjprs.2020.04.002.
L. Zhang, M. Bai, R. Liao, R. Urtasun, D. Marcos, D. Tuia, and B. Kellenberger. Learning deep struc-

tured active contours end-to-end. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, page 8877–8885. IEEE, Jun 2018. ISBN 978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00925. URL
https://ieeexplore.ieee.org/document/8579023/.

17

https://ieeexplore.ieee.org/document/9157078/
https://diagnosticpathology.biomedcentral.com/articles/10.1186/1746-1596-6-S1-S15
https://diagnosticpathology.biomedcentral.com/articles/10.1186/1746-1596-6-S1-S15
http://dx.doi.org/10.1016/j.isprsjprs.2020.04.002
http://dx.doi.org/10.1016/j.isprsjprs.2020.04.002
https://ieeexplore.ieee.org/document/8579023/

	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 The Contour Proposal Network

	2 Methods
	2.1 Detection
	2.2 Contour Representation
	2.3 Local Refinement
	2.4 Non-Maximum Suppression
	2.5 Loss functions

	3 Experiments and results
	3.1 Datasets
	3.2 Baseline Methods
	3.3 CPN Training
	3.4 Detection and segmentation performance
	3.5 Cross-dataset generalization
	3.6 Inference speed

	4 Discussion and conclusion

