000906624 001__ 906624
000906624 005__ 20250314084120.0
000906624 0247_ $$2doi$$a10.48550/ARXIV.2109.12855
000906624 0247_ $$2Handle$$a2128/30873
000906624 037__ $$aFZJ-2022-01560
000906624 1001_ $$0P:(DE-Juel1)165321$$aPronold, Jari$$b0$$eCorresponding author
000906624 245__ $$aRouting brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers
000906624 260__ $$barXiv$$c2021
000906624 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1648190536_1087
000906624 3367_ $$2ORCID$$aWORKING_PAPER
000906624 3367_ $$028$$2EndNote$$aElectronic Article
000906624 3367_ $$2DRIVER$$apreprint
000906624 3367_ $$2BibTeX$$aARTICLE
000906624 3367_ $$2DataCite$$aOutput Types/Working Paper
000906624 520__ $$aSimulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural networks. Contemporary brain-scale networks correspond to directed graphs of a few million nodes, each with an in-degree and out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and synapses, respectively. When considering a random graph, each node's edges are distributed across thousands of parallel processes. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its outgoing synapses to the corresponding target neurons. This spatial and temporal sparsity represents an inherent bottleneck for simulations on conventional computers: Fundamentally irregular memory-access patterns cause poor cache utilization. Using an established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algorithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically parallel computational problem can overcome the von Neumann bottleneck of conventional computer architectures.
000906624 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000906624 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000906624 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000906624 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x3
000906624 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x4
000906624 536__ $$0G:(GEPRIS)368482240$$aGRK 2416: MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240)$$c368482240$$x5
000906624 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x6
000906624 588__ $$aDataset connected to DataCite
000906624 650_7 $$2Other$$aDistributed, Parallel, and Cluster Computing (cs.DC)
000906624 650_7 $$2Other$$aFOS: Computer and information sciences
000906624 7001_ $$0P:(DE-Juel1)151356$$aJordan, Jakob$$b1
000906624 7001_ $$0P:(DE-Juel1)132302$$aWylie, Brian J. N.$$b2$$ufzj
000906624 7001_ $$0P:(DE-Juel1)187457$$aKitayama, Itaru$$b3$$ufzj
000906624 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b4$$ufzj
000906624 7001_ $$0P:(DE-Juel1)187422$$aKunkel, Susanne$$b5$$eCorresponding author
000906624 773__ $$a10.48550/ARXIV.2109.12855
000906624 8564_ $$uhttps://arxiv.org/abs/2109.12855
000906624 8564_ $$uhttps://juser.fz-juelich.de/record/906624/files/dstream.pdf$$yOpenAccess
000906624 909CO $$ooai:juser.fz-juelich.de:906624$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000906624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165321$$aForschungszentrum Jülich$$b0$$kFZJ
000906624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132302$$aForschungszentrum Jülich$$b2$$kFZJ
000906624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187457$$aForschungszentrum Jülich$$b3$$kFZJ
000906624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b4$$kFZJ
000906624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187422$$aForschungszentrum Jülich$$b5$$kFZJ
000906624 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000906624 9141_ $$y2022
000906624 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906624 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000906624 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000906624 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000906624 9801_ $$aFullTexts
000906624 980__ $$apreprint
000906624 980__ $$aVDB
000906624 980__ $$aUNRESTRICTED
000906624 980__ $$aI:(DE-Juel1)INM-6-20090406
000906624 980__ $$aI:(DE-Juel1)IAS-6-20130828
000906624 980__ $$aI:(DE-Juel1)INM-10-20170113
000906624 981__ $$aI:(DE-Juel1)IAS-6-20130828