Hauptseite > Publikationsdatenbank > Routing brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers > print |
001 | 906624 | ||
005 | 20250314084120.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2109.12855 |2 doi |
024 | 7 | _ | |a 2128/30873 |2 Handle |
037 | _ | _ | |a FZJ-2022-01560 |
100 | 1 | _ | |a Pronold, Jari |0 P:(DE-Juel1)165321 |b 0 |e Corresponding author |
245 | _ | _ | |a Routing brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers |
260 | _ | _ | |c 2021 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1648190536_1087 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Simulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural networks. Contemporary brain-scale networks correspond to directed graphs of a few million nodes, each with an in-degree and out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and synapses, respectively. When considering a random graph, each node's edges are distributed across thousands of parallel processes. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its outgoing synapses to the corresponding target neurons. This spatial and temporal sparsity represents an inherent bottleneck for simulations on conventional computers: Fundamentally irregular memory-access patterns cause poor cache utilization. Using an established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algorithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically parallel computational problem can overcome the von Neumann bottleneck of conventional computer architectures. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 1 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 2 |
536 | _ | _ | |a DEEP-EST - DEEP - Extreme Scale Technologies (754304) |0 G:(EU-Grant)754304 |c 754304 |f H2020-FETHPC-2016 |x 3 |
536 | _ | _ | |a ACA - Advanced Computing Architectures (SO-092) |0 G:(DE-HGF)SO-092 |c SO-092 |x 4 |
536 | _ | _ | |a GRK 2416: MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240) |0 G:(GEPRIS)368482240 |c 368482240 |x 5 |
536 | _ | _ | |0 G:(DE-Juel-1)ATMLPP |a ATMLPP - ATML Parallel Performance (ATMLPP) |c ATMLPP |x 6 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Distributed, Parallel, and Cluster Computing (cs.DC) |2 Other |
650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
700 | 1 | _ | |a Jordan, Jakob |0 P:(DE-Juel1)151356 |b 1 |
700 | 1 | _ | |a Wylie, Brian J. N. |0 P:(DE-Juel1)132302 |b 2 |u fzj |
700 | 1 | _ | |a Kitayama, Itaru |0 P:(DE-Juel1)187457 |b 3 |u fzj |
700 | 1 | _ | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 4 |u fzj |
700 | 1 | _ | |a Kunkel, Susanne |0 P:(DE-Juel1)187422 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.48550/ARXIV.2109.12855 |
856 | 4 | _ | |u https://arxiv.org/abs/2109.12855 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906624/files/dstream.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906624 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165321 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132302 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)187457 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144174 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)187422 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|