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Abstract

Simulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural
networks. Contemporary brain-scale networks correspond to directed graphs of a few million nodes, each with an in-degree and
out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and
synapses, respectively. When considering a random graph, each node’s edges are distributed across thousands of parallel pro-
cesses. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its
outgoing synapses to the corresponding target neurons. This spatial and temporal sparsity represents an inherent bottleneck for
simulations on conventional computers: Fundamentally irregular memory-access patterns cause poor cache utilization. Using an
established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover
cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algo-
rithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically
parallel computational problem can overcome the von Neumann bottleneck of conventional computer architectures.

Keywords: spiking neural networks, large-scale simulation, cache performance, distributed computing, parallel computing,
memory access bottleneck

1. Introduction The brain mantle, called cerebral cortex, contains the neu-
ronal cell bodies. Tangential to the cortical surface, the proba-
bility of two cortical neurons to establish a contact is approxi-
mately 0.1 within a distance of one millimeter, but it declines
rapidly for longer distances. Half of a neuron’s outgoing con-
nections are not local but target neurons at distant locations
forming a hierarchically organized architecture [for an exam-
ple see 1]. Due to the sheer number of neurons in the brain, the
probability of any pair sharing an edge is vanishingly small.

Irregular access to large amounts of memory challenges the
von Neumann computer architecture. Distributed applications
typically make use of systems with hybrid parallelization, using
message passing libraries for the communication between com-
pute nodes and multi-threading to employ the computational
cores in each node. In this contribution, we investigate as an
extreme real-world example application simulation code for bi-
ological neural networks.

Such networks correspond to graphs. The graph repre-
senting the neurons as nodes and their contact points, called
synapses, as directed edges is sparse and complex. In the mam-
malian brain a neuron establishes several thousands or even
more tha‘n ten—thousar‘ld of incoming Synapses and the number by the brain on a sub-second time scale. The time required
of outgoing synapses is of the same order. This corresponds to

. to decide whether an image contains a living object is 180 ms
a graph, where both in-degree and out-degree of each node are .
for monkeys and 270 ms for humans, the interval between eye
of the order of 1000 or even 10, 000.

movements is about 250 ms, and humans utter about two words
per second. Neuroscientists hypothesize that sparse, distributed

The interaction between neurons is mediated through
synapses by point-like events, called spikes. Spike events are
sparse in time given that neurons emit a single or few spikes
per second while the time constants of single-neuron dynamics
are in the range of milliseconds and also behavior is organized
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puter memory in simulations of spiking neural networks. The
strength of the interaction mediated by a synapse can change
over time depending on the activities of the presynaptic and
the postsynaptic neurons and third factors like neuromodula-
tors and the membrane potential of the postsynaptic neuron.
This dynamics, called synaptic plasticity, is a key mechanism of
system-level learning. For the purpose of this investigation we
assume that each synapse maintains a state variable represent-
ing the coupling strength, which we refer to as synaptic weight,
but plastic processes are not considered. Moreover, synaptic
transmission of spikes entails a delay, which is the time interval
between the presynaptic neuron emitting a spike and the spike
taking effect on the postsynaptic neuron. Depending on the spa-
tial distance between presynaptic and postsynaptic neuron the
delay can be shorter than 0.1 ms or longer than 10.0 ms. This
study considers homogeneous delays of 1.5 ms.

The spikes emitted by model neurons represent the sharp
voltage transients of biological neurons, called action poten-
tials. Models describing neuronal networks at the level of reso-
lution of neurons and synapses represent individual neurons by
a small system of differential equations. Often the system is lin-
ear and all non-linearity is condensed in a threshold operation
on the state vector generating the point-like event. In our case
the subthreshold dynamics can be integrated exactly, limiting
the workload in terms of floating point operations.

Over the past two decades simulation tools in computational
neuroscience have increasingly embraced a conceptual separa-
tion of generic simulation engines and specific models of neu-
ronal networks [2]. Many different models can thus be simu-
lated with the same simulation engine. This enables the com-
munity to separate the life cycle of a simulation engine from
those of specific models and to maintain and further develop
simulation engines as an infrastructure. Furthermore, the sepa-
ration facilitates the cross-validation of simulation engines.

Before the dynamical state of a model of a neuronal net-
work can be propagated an instance of the model needs to be
created in computer memory. Often network models are con-
cisely defined by probabilistic construction rules rather than ex-
plicit adjacency lists. Therefore, in simulations of neuronal
networks we distinguish between the phase of network con-
struction and the actual simulation phase, where state propa-
gation takes place. The former is a research topic on its own
[3]. The present work concentrates on the simulation phase.
While network construction may take relevant amounts of wall-
clock time, the simulation time scales with the biological time
span to be covered by the model, but network construction does
not. Propagating the dynamical state of the network in time in-
volves three repeating phases [4, 5]. The first, termed update,
advances the state of the neurons by a time interval correspond-
ing to the minimal synaptic delay in the system, where even
smaller update steps at the level of individual neurons are possi-
ble. The second, communication, is concerned with distributing
the spikes that have occurred in this time interval to the com-
pute nodes and threads hosting the respective target neurons.
The subsequent spike-delivery phase routes the spikes arriving
at a compute node via the representations of the corresponding
synapses to their target neurons. Our investigation concentrates
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Figure 1: Contributions to simulation time (sim time) for spiking neural net-
work simulations compared to the situation prior to optimization. Weak-scaling
experiment running 2 MPI processes per compute node and 12 threads per MPI
process, with a workload of 125, 000 neurons per MPI process (network model
see Section 2.2). The network dynamics is simulated for 1 s of biological time;
spikes are communicated across MPI processes every 1.5 ms. Solid bars show
total sim time (black outline), time spent on spike delivery (red), communica-
tion of spike data (yellow), and neuronal update (green) after refactoring [9]
and using a combination of the optimizations of spike delivery discussed in this
study (bwRB*, bwTS). Dashed bars show total sim time (black dashed) and
time spent on spike delivery (red dashed) of the original code (Algorithm ORI
in [9]); original communication and update times (Figure 3 of [9]) omitted for
clarity. Error bars (visible only at 128 MPI processes for the original sim time)
indicate standard deviation over three repetitions. Timings obtained via manual
instrumentation of the source code; measured on JURECA CM (Section 2.3).

on this final phase of the cycle.

The combination of irregular spiking activity and sparse
connectivity, leads to a practically random memory-access pat-
tern during spike delivery. Seemingly this is a worst case situ-
ation for the von Neumann architecture where for any compu-
tation the content of a respective memory unit has to be trans-
ported to the central processing unit and the result needs to be
transported back. Other disciplines, such as graph processing
[6] and main memory database systems [7, 8] suffer from fre-
quent and unpredictable main memory access as well.

Let us consider a concrete example for illustration. In weak
scaling of simulations with the same number of neurons per
MPI process, spike delivery dominates simulation time inde-
pendent of the number of MPI processes employed (Figure 1).
In the regime from 2 to 512 MPI processes the time required for
spike delivery almost quadruples (factor of 3.9). The refactor-
ing efforts described in a technical companion paper [9] and the
optimizations discussed in this article reduce the dependence of
spike delivery on the number of MPI processes. Not affected
by these changes to the original spike-delivery algorithm are
neuronal update and communication (cf. Figure 3 of [9]). Ad-
ditionally, the absolute time for neuronal update remains un-
changed throughout as the number of neurons per MPI process
is fixed. Beyond 512 MPI processes the relative contribution of
spike delivery to simulation time drops below 50% because the
time required for communication increases.

All simulation code analyzed in this study already provides
optimizations reducing the number of spikes that MPI processes
need to exchange in small to medium scale simulations (Sec-
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Figure 2: Relative change in simulation time after preparatory refactoring of
spike-delivery algorithm (REF) as a function of the number of MPI processes
M. Weak scaling of benchmark network model (Section 2.2) in linear-log rep-
resentation. Same configuration as in Figure 1 for DEEP-EST CM (blue) and
JURECA CM (turquoise) systems; error bars show standard deviation based
on 3 repetitions. Data of K computer (red) for 1 MPI process per compute
node, 8 threads per MPI process, and 18,000 neurons per MPI process (sys-
tems identified in Section 2.3). Black dotted line at zero indicates performance
of original code (ORI in [9]). Dotted curves with corresponding colors indi-
cate hypothetical limit to the decrease in sim time defined by the contribution
of spike-delivery time to sim time.

tion 3.2; see Section 3.3 in 10). The code exploits the lesser
degree of distribution across processes in this regime where the
average number of outgoing synapses per neuron outnumbers
the total number of MPI processes. This reduces both commu-
nication times and spike-delivery times, which in turn results in
shorter overall simulation times (Figure 1). The present work
addresses this practically relevant intermediate regime, where
the effect of the optimizations gradually diminishes with the
degree of distribution across processes, which impacts scalabil-
ity. Nevertheless, the code scales well on modern supercom-
puters (see Figure 7C in 10; 5g-sort) as the optimizations reach
their limit in the large-scale regime as the outgoing synapses
of each neuron are almost fully distributed across processes. A
technical companion paper [9] derives an analytical expression
for this transition to a fully distributed network under the con-
straints of weak scaling.

The success of an optimization needs to be evaluated in the
light of potential gain. The maximal gain by an optimization to
a specific part of code is limited by the contribution of this part
of code to the overall runtime. Conversely, if a different part of
the code dominates the runtime, the optimization may go unno-
ticed. The spike-delivery algorithm that serves as a reference
in this study (Section 3.2) already benefits from the refactoring
described in a technical companion paper [9]. The refactoring
significantly reduces simulation time (Figure 2) showing differ-
ent effectiveness on the tested systems (Section 2.3). However,
over the full range there is room for further improvement to
spike delivery by at least the same amount.

Recently, Cremonesi et al. made major progress by deriv-
ing a detailed analytic performance model [11, 12]. The model
reveals specific algorithmic and hardware bottlenecks for three
classes of neuronal network models mapping out the field of
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computational neuroscience. Latency of the communication
network and memory bandwidth are identified as the most se-
vere bottlenecks in large-scale simulations. The authors find
that in models of the type discussed in the present study the
spike-delivery phase is the most expensive one once the data do
not fit into the cache hierarchy anymore. The most severe hard-
ware constraint is the saturation of memory bandwidth which is
driven by the memory-latency effect of the irregular access pat-
terns. While the CPU is capable of issuing many memory ac-
cesses in advance to partially hide latency of processing spikes,
the authors expect that two established strategies, pipelining
and prefetching, cannot effectively hide the latency introduced
by the non-contiguous data accesses.

Prefetching attempts to hide cache misses and memory
stalls [13] by overlapping memory access with computation.
In general, two types can be distinguished: hardware-induced
and software-induced prefetching. The former relies on the
underlying hardware to detect patterns in memory access such
that the hardware can take care of getting the data into the
cache just when it is needed. The latter relies on hints in
the source code via prefetch instructions indicating what data
should be loaded into cache. This is a promising technique
when hardware predictions fail but the access pattern can still
be known by the developer a priori.

In the past, several techniques for prefetching have been in-
vestigated. Especially pointer-based data structures which suf-
fer from "pointer chasing", as for example large graphs [14, 15]
and databases [16, 17, 18], profit from prefetching. The main
challenge is to issue the prefetch instructions early enough such
that the data is loaded timely into cache, but also late enough
such that it does not clog the cache.

Recent work has focused on introducing code stages to deal
with dynamic memory access and uncertainty in the number
of lookups. This is achieved either by manually implementing
state machines [19] or usage of coroutines [16, 17, 18]. Corou-
tines are resumable functions that can suspend their current ex-
ecution. In both cases a prefetching instruction is inserted just
before the memory stalls. After the prefetch instruction the
program saves its current state and continues with other work.
When entering the function the next time the required piece
of memory is available and operation can resume where it left
off. These techniques are promising for cases where irregularity
such as variable-length pointer chains and potential early loop
exits prevent usage of simpler prefetching techniques.

If the number of pointer dereferences is known ahead of
time and is constant across lookups, a promising technique to
employ is group prefetching [20]. Group prefetching is a loop-
transformation method which breaks a single for loop into an
outer and several inner loops allowing batchwise processing of
code stages and critical data to be prefetched.

Another technique capable of hiding cache misses is soft-
ware pipelining [21, 22, 23]. Here loops are transformed such
that the instructions inside of the loop are carried out with an
offset and overlapped with each other (details in Section 4.2).
Thus, memory accesses and arithmetic operations inside the
loop are no longer mutually dependent. As recent CPUs are
superscalar, independent memory accesses and arithmetic op-



2.1 Simulation engine

erations can be executed in parallel. This increases the num-
ber of instructions completed per cycle. As the modification of
the for loop increases the number of instructions, the increase
in instructions per cycle has to be greater than the increase in
number of instructions to improve the overall performance.

The present study begins with a description of our setting in
terms of hardware and software as well as the profiling frame-
work (Section 2). We use the open-source community simula-
tion code NEST (Section 2.1) to obtain performance data from a
real-world application and as a framework for reference imple-
mentations of the optimization techniques discussed. Absolute
performance data require a concrete neuronal network model
close to the ones used in production. The network model intro-
duced in Section 2.2 is prototypical for a wide class of models
in neuroscience, it is scalable, and it has been used in a num-
ber of previous studies. A scientific community code needs to
be developed and maintained over decades. Therefore it is im-
portant that new algorithms do not improve the performance on
one architecture while making it impossible to adapt to the next
generation of systems. Therefore, we assess the performance
of a recent mainstream architecture, a common but older high-
end cluster, and a dedicated supercomputer (Section 2.3). Sec-
tion 3 describes the data structures representing neurons and
synapses and how spikes travel through these data structures
from arrival at the compute node to their ultimate delivery at
the target neurons. Based on this, the subsequent two sections
form the core of the investigation. Section 4 proposes new algo-
rithms based on latency-hiding techniques indicated above for
different phases of spike delivery. Section 5 presents a quan-
titative analysis of the effects of the new algorithms and their
combination on different hardware architectures. Finally, Sec-
tion 6 derives a combination of algorithms delivering a robust
overall performance gain across problem sizes and hardware ar-
chitectures. The study concludes by setting the results into the
context of the generic problem of applications with essentially
random memory access patterns and their implications for the
interpretation of the von Neumann bottleneck and the design of
neuromorphic computing systems.

Source code, simulation and analysis scripts are openly
available [24] at Zenodo'. The presented conceptual and al-
gorithmic work is part of our long-term collaborative project
to provide the technology for neural systems simulations [25].
Preliminary results have been presented in abstract form [26].

2. Benchmarking framework

2.1. Simulation engine

In the present work we evaluate the concepts and new al-
gorithms in the framework of the simulation code NEST? [25],
a widely used engine for spiking neuronal networks of natural
density at the resolution of individual nerve cells and synapses.

Ihttps://www.zenodo.org
’nttps://www.nest-simulator.org
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NEST is an open source project governed by the public soci-
ety NEST Initiative* and a component of the ICT infrastruc-
ture* created by the European Human Brain Project (HBP).
The development is managed via GitHub where contributions
undergo a formal code review and consistency is ensured by
continuous integration using automated style checks and test-
ing. The kernel of the simulator is written in C++ and uses
MT coequal OpenMP [27] threads for parallelization which
are arranged into M MPI [28] processes harboring T threads
each. The differential equations and state transitions defining
neuron and synapse models are expressed in the domain spe-
cific language NESTML [29, 30] which generates the required
C++ code for dynamic loading into the simulation engine. The
configuration of simulation experiments, including neuron and
synapse models, network structure and recorded data, are spec-
ified interactively via Python using PyNEST [31, 32]. Neurons
are distributed across parallel resources together with their in-
coming synapses in a round-robin fashion. This distribution
implements a simple load balancing scheme as it minimizes the
number of neurons from the same population, which may ex-
hibit similar activity patterns, on the same thread. Already Mor-
rison et al. [4] find that not only the propagation of the dynami-
cal state of the neuronal network but also network construction
needs to be parallelized to achieve sufficient performance for
practical applications. More than a decade later Ippen et al.
[3] improve the algorithms for multi-threading on many-core
systems and point out that non-blocking memory allocation is
essential for performance. However, as network creation is not
in the focus, the present work stays with the system malloc().
The work is based on commit 059fe89 of release 2.18.

NEST uses a globally time-driven simulation scheme [4],
where neurons are typically updated every 0.1 ms and spike
times are constrained to this time grid. There is a biophysi-
cal delay between the emission of a spike by the source neuron
and the arrival at the target neuron. Therefore, it suffices to ex-
change spike data between threads in intervals of the minimal
delay in the neuronal network [5]. Consequently, the simula-
tion cycle propagating the dynamical state of the network di-
vides into three phases: update neurons, communicate spikes
between threads, and deliver spikes to target neurons including
the propagation of synaptic dynamics (see Figure 1). Different
neuron models require solvers of different computational load
ranging from precalculated exact propagator matrices for linear
neuron models [33] to generic solvers for non-linear differential
equations with adaptive time-stepping. Similarly the workload
of synapses depends on the chosen model. Static synapses are
stateless whereas for plastic synapses the state may depend on
the activities of the pre- and the postsynaptic neuron [34]. Over
the years the scalability of NEST has been demonstrated on a
range of supercomputers [35, 36, 37, 10]. Recent revisions of
the code employ MPI_Alltoall to send spikes only to MPI ranks
where they have targets [10].

3https://www.nest—initiative.org
“https://www.ebrains.eu
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2.2. Network model

To measure and compare the suggested algorithmic im-
provements we use a balanced random network model [38] as a
benchmark similar to the one used in previous studies on neu-
ronal network simulation technology [39, 35, 36, 37, 3, 40, 10].
The parameters for this benchmark model are specified in the
parameter tables 1, 2 and 3 in Jordan et al. [10]. Note that in
contrast to previous studies, where excitatory-excitatory con-
nections exhibited spike-timing dependent plasticity, the model
considered here uses static synapses, which do not exhibit any
dynamics and consequently have a fixed weight.

We consider the model a scalable version of a typical neu-
ronal network simulation as the neuronal activity exhibits an
asynchronous irregular spike pattern and does not depend sig-
nificantly on the model’s size. Furthermore, the random con-
nectivity of the network model represents a worst-case scenario
in terms of network structure: Local connection patterns can-
not, not even in principle, be exploited by representing subnet-
works on a subset of available nodes as a single neuron connects
with equal probability with any other neuron in the network.

All measurements of runtime in this study refer to the actual
simulation time, or in short “sim time”, where the network state
is propagated; measurements of network-construction time and
initialization time are not part of this study.

2.3. Systems

The detailed specifications of the computer systems are
given in [9]. JURECA CM [41] consists of 1872 compute
nodes (dual Intel Xeon E5-2680 v3 Haswell 12-core CPUs at
2.5 GHz), DEEP-EST® has 50 nodes (dual Intel Xeon Gold
6146 Skylake 12-core CPUs at 3.2 GHz), and the K computer
[42] houses 82,944 nodes (8-core Fujitsu SPARC64 VIIIfx
CPU at 2 GHz).

2.4. Measurements of runtime and profiling

For systematic benchmarking we rely on the Jiilich Bench-
marking Environment (JUBE) 6[43], which is a software suite
actively developed by the Jiilich Supercomputing Centre. For
measuring the time consumption of different parts of the code
we rely on the Stopwatch class distributed with NEST. This
class acts as a wrapper around gettimeofday () which is part
of the header <sys/time.h> of the C POSIX library’.

We use the Microarchitecture Exploration analysis mode
of the Intel VTune Profiler®, which provides detailed in-
formation on hardware usage. By specifying the option
uarch-exploration, the running process is periodically
interrupted enabling the sampling of hardware events from the
processor. These events are used for calculating predefined
ratios, which are reported once the program has finished. The
study collects data only for the first 64 MPI processes and re-
stricts measurements to the spike-delivery phase. Specifically,

Shttps://www.deep-projects.eu

bhttps://www.fz-juelich.de/jsc/jube

"https://pubs.opengroup.org/onlinepubs/9699919799/idx/
head.html

8nttps://software.intel.com/vtune
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Figure 3: Memory layout of synapses and neurons on each MPI process. Each
process stores the local synapses (pink filled squares) in a three-dimensional
resizable array sorted by hosting thread and synapse type. At the innermost
level, synapses are arranged in source-specific target segments (dark pink: first
synapse; light pink: subsequent targets); only one innermost array shown for
simplicity. Target neurons (blue filled squares) are stored in neuron-type and
thread-specific memory pools; only one pool shown for simplicity. Each neuron
maintains a spike ring buffer (dotted light blue circles). Synapses have access
to their target neurons’ spike ring buffers through pointers (dark pink arrows).
Adapted from Figure 1 of Pronold et al. [9].

we focus on the Clockticks per Instructions Retired (CPI) event
ratio. The CPI measure is calculated via dividing the number
of unhalted processor cycles (clockticks) by the number of
instructions retired. CPI indicates to what extent latency affects
the application’s execution, with smaller values corresponding
to smaller latencies.

3. Memory access during spike delivery

In spiking neuronal network simulation code the temporally
sparse event-based communication between neurons presents
a challenging performance bottleneck for modern architec-
tures optimized for dense data but hence also an optimization
opportunity. Due to the connection data structures and the
spike-delivery algorithm of our reference implementation
NEST (Section 2.1), delivery of spikes to their targets involves
frequent access to essentially random memory locations.
Therefore, memory access is difficult to predict automatically,
leading to long data access times due to ineffective use of
caches. The following two sections describe the connection
data structures and the spike-delivery algorithm that serves as
a starting point for the latency-hiding techniques investigated
in this study (Section 4) and as a reference in the quantitative
analysis (Section 5). This reference algorithm is a result of the
preparatory refactoring of the original data structures and algo-
rithm presented in Pronold et al. [9], which already achieves a
significant reduction in simulation time (Figure 2).

3.1. Memory layout of synapses and neurons

Each synapse is represented on the same MPI process and
thread as its target neuron [4], where a model synapse has a
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3.2 Spike-delivery algorithm

memory footprint of few tens of Bytes, while a model neu-
ron easily consumes a Kilobyte or more. Each MPI process
makes use of a three-dimensional resizable array to store the
process-local synapses sorted by hosting thread and synapse
type (Figure 3). The data structure takes into account that each
neuron typically connects to many target neurons (out-degree):
In the innermost arrays, synapses are sorted by source neuron
and thereby arranged in target segments, each consisting of at
least one target synapse potentially followed by subsequent tar-
gets. The number of unique source neurons and hence the av-
erage length of target segments depends on the distribution of
synapses across MPI processes and threads as well as the num-
ber of synapse types. In the limit of sparsity where the number
of neurons in the network exceeds the number of thread-local
synapses, the length of target segments approaches one.

In order to account for synaptic transmission delays each
neuron maintains a ring buffer accommodating the incoming
spikes until they are due to take effect on the neuronal dynamics
[4]. In the reference algorithm, a synapse has access to its target
neuron’s spike ring buffer through a pointer [cf. Section 4.2, 9].

Neurons of the same type that are also hosted by the same
thread belong to the same memory pool consisting of multiple
chunks that allow for contiguous storage of many objects. As
synapses from many different source neurons converge on a tar-
get neuron (in-degree), the memory locations of target neurons
cannot be ordered according to source neurons and are hence
independent of the order of synapses in the target segments.

3.2. Spike-delivery algorithm

The distributed time-driven simulation of spiking neuronal
networks proceeds in a cycle of updates to all neurons, commu-
nication of all recent spikes across MPI processes, and delivery
of the spikes to their process-local synaptic and neuronal tar-
gets. After every spike communication, each MPI process holds
a receive buffer filled with spike data that need to be dispatched
to the process-local targets. Each spike entry addresses an en-
tire target segment of synapses (Section 3.1). To this end, the
spike entry needs to be able to locate the beginning of the target
segment within the three-dimensional data structure storing the
process-local synapses (Figure 3), i.e. the first synapse of the
target segment. Therefore, each spike entry conveys identifiers
for the hosting thread and the type of the synapse, as well as the
synapse’s index within the innermost resizable array.

In the reference algorithm, the delivery of spikes from
the MPI receive buffer to the local targets hosted by differ-
ent threads is a two-step process allowing for an entirely
thread-parallel delivery with a single synchronization point
[cf. Section 4.1, 9]. First, the threads sort the spike entries by
hosting thread and synapse type in parallel using a dedicated
intermediate data structure, called spike-receive register, only
then the threads dispatch the spikes, now exclusively reading
relevant entries.

Starting with the first synaptic target, the hosting thread sub-
sequently processes all synapses of a spike’s target segment.
The number of spike entries in the receive buffer depends on
the degree of distribution of synapses across MPI processes
and threads as well as the number of synapse types. Arranging

bwRB*: Delivery of spikes in batches of size Bgg, in-
cluding group prefetching of spike ring buffers. TS marks
iteration over a synaptic target segment. SYN marks ac-
cess to an individual target synapse; RB marks access to
the spike ring buffer of the corresponding target neuron;
RB* marks group prefetching prior to access. Based on
REF.
Data: spike_reg, synapses

create arrays target_rb, delay, weight of size B_RB

i<—0

foreach spike in spike_reg do

lcid « spike.lcid

subsq « true
TS while subsq do

SYN (subsq, target_rblil, delay[i], weight[i]) «
synapses[lcid].Send ()

i—i+1

lcid « lcid + 1

if i == B_RB then

fori — O0OtoB_RB-1do
RB* L prefetch rarget_rb[i]
fori — OtoB_RB -1 do
RB target_rb[i].AddValue (delayli],
weight[i])
B i<—0

process remaining entries in target_rb

synapses in source-specific target segments such that only one
spike needs to be communicated to address an entire segment is
an effective optimization for small to medium-scale simulations
(see Section 3.3 in 10). However, when increasing the network
size in a weak-scaling experiment, ever more source neurons
have ever fewer thread-local targets, or conversely, ever more
thread-local synapses originate from different source neurons
such that they can no longer be combined into long target seg-
ments addressed by a single source-specific spike entry. This is
the limit of sparsity discussed in Section 3.1.

The synapse object stores all information relevant for the
subsequent delivery to the target neuron, foremost a pointer to
the target neuron’s spike ring buffer. During delivery of the
spike to the target neuron the algorithm retrieves the pointer
from the synapse as well as synaptic properties such as delay
and weight, which define time and amplitude of the spike’s im-
pact on the neuron, respectively. Taking into account the delay,
the algorithm adds the weight of the incoming spike to the cor-
rect position in the neuronal spike ring buffer.

For each relevant spike entry the hosting thread accesses
target synapses and neurons in an alternating fashion. All tar-
get synapses of a spike entry are in contiguous locations in
memory as they are part of the same target segment, but the
corresponding target neurons are in nonadjacent memory lo-
cations. Furthermore, with every spike entry, the thread pro-
ceeds to a different synaptic target segment, most likely not in
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REF: Reference algorithm delivering spikes to local tar-

gets. TS marks iteration over a synaptic target segment.
SYN marks access to an individual target synapse; RB
marks access to the spike ring buffer of the correspond-
ing target neuron. Variables typeset in italics, functions
in typewriter. See Pronold et al. [9] for a more detailed
presentation.

Data: spike_reg, synapses

foreach spike in spike_reg do

lcid « spike.lcid

subsq « true
TS while subsq do

SYN (subsq, target_rb, delay, weight) «
synapses[lcid].Send ()

lcid « Icid + 1

RB target_rb.AddValue (delay, weight)

a proximate memory location. With increasing sparsity of the
network in a weak-scaling experiment, such switches between
target segments become more frequent as ever more spike en-
tries need to be delivered to ever shorter target segments. In the
sparse limit, both accessing target synapses and the correspond-
ing target neurons requires the hosting thread to jump to random
memory locations. The pseudocode of the reference algorithm
(REF) presents this memory bottleneck of the spike-delivery al-
gorithm in an abstract way omitting intricacies caused by sup-
port for multi-threading and different synapse types.

4. Latency-hiding techniques

Based on the reference algorithm (REF), we investigate
three techniques to hide memory fetch latency and reduce the
number of cache misses during spike delivery. To assist the
reader in following the algorithmic changes, we provide pseu-
docode for the reference algorithm (REF), each of the potential
adaptations (bwRB*, lagRB, and bwTS), and a combination
of two adaptations (bwTSRB*). The algorithms bwRB* and
lagRB encode competing adaptations of the reference algo-
rithm REF, whereas bwTS encodes an adaptation that can be
combined with either of the former. The pseudocode is reduced
to the essential elements of the spike delivery; in particular,
we apply the following simplifications: the code does not take
into account multiple threads or synapse types and the initial
thread-parallel transfer of spike entries from the MPI receive
buffer to the spike-receive register is omitted (Section 3.2). The
performance of the algorithms is analyzed in Section 5.

The reference algorithm has access to a resizable array
of thread-local synapses and to a spike register (spike_reg),
which contains all spike entries that need to be delivered [see
Section 4.1 of 9, for details]. For each spike entry, the location
of the first target synapse is extracted and assigned to the
variable /cid, which is then used in the enclosed while loop to
iterate over the spike’s entire synaptic target segment within the
synapses array (TS). Each synapse stores an indicator (subsq)

lagRB: Delivery of spikes introducing a lagged access
to ring buffers with respect to the corresponding target
synapses; lag is Brg. TS marks iteration over a synaptic
target segment. SYN marks access to an individual target
synapse; RB marks access to the ring buffer of the target
neuron. Based on REF.

Data: spike_reg, synapses

create arrays target_rb, delay, weight of size B_RB +1
i—0
j<0
foreach spike in spike_reg do
lcid « spike.lcid
is_init « true
subsq « true
TS while subsq do
SYN (subsgq, target_rbli], delay[i], weight[i]) «
synapses[lcid].Send ()
i—i+1
if i == B_RB + 1 then
L i—0
lcid « lcid + 1
if is_init and i == B_RB then
| is_init < false

else
RB target_rb[ jl.AddValue (delay| j], weight[j])
je—j+1
if j == B_RB + 1 then
[ j<o0

process remaining entries in target_rb

of whether the target segment continues or not. To deliver a
spike to the target synapse at position [cid, the synapse member
function Send () is called on synapses[lcid] returning the
indicator subsq, the pointer to the spike ring buffer, and the
synaptic delay and weight (SYN). The pointer is then used to
call AddValue(), a member function of the neuronal spike
ring buffer requiring the delay and the weight (RB). Taking into
account the delay, the spike ring buffer adds the weight of the
incoming spike to the correct position. This implements the
delivery of the spike to the target neuron. Note the dependency
of the algorithmic step RB on step SYN, which is readily visible
as a result of the prior refactoring [Section 4.2 of 9].

4.1. Batchwise access to spike ring buffers

We next consider a loop-transformation method that allows
for group prefetching [20]. The method breaks a single for
loop of L iterations containing several code stages into an outer
and several inner loops of size Lg and B, respectively, where
L = LgB. For example, an original loop {X;YE over two op-
erations X; and Y; depending on running index i is transformed
into {X(j,1)3+] e XjBY(j—l)BJrl R YjB}LB. The code stages of the
original for loop are hence processed in a batchwise manner.
All code stages are handled B times before moving to the next
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step of the outer loop. By introducing code stages of size B, a
prior loop prefetching all critical data can be inserted, making
use of memory-level parallelism.

We adapt the reference algorithm such that access to
synapses and access to spike ring buffers is carried out in
batches of size Brg (bwRB*). First, Bgp synapses are accessed
to retrieve the pointers to the corresponding target neurons’
spike ring buffers as well as the synaptic weights and de-
lays (SYN). The retrieved synaptic information is temporarily
buffered in three auxiliary arrays (target_rb, delay, weight) of
size Brg. Each time Bgp synapses have been accessed such
that the auxiliary buffers are filled, batchwise access to the
Brp collected target spike ring buffers is triggered to add the
corresponding weights to the correct buffer positions (RB). An
optional prior step is the software-induced prefetching of the
Brp spike ring buffers into the cache (RB+*). To this end, in
the NEST implementation (Section 2.1) we make use of the
GCC built-in function __builtin_prefetch(const void
*addr, ...)7%; the prefetching can be enabled at compile
time. The method is referred to as group prefetching as it
consecutively prefetches data from an entire batch of Brg indi-
vidual memory addresses before operating on the group of data
instead of using a per-memory-address approach alternating
between prefetching and processing. In the quantitative anal-
ysis (Section 5) we refer to this set of optimizations as either
bwRB or bwRB*, where the asterisk indicates prefetching.

The batchwise progression is agnostic with regard to the
boundaries of synaptic target segments (Section 3.1), which
means that in case of short target segments, it can take sev-
eral iterations of the for loop over spike entries to process Brp
synaptic targets. Leaving and re-entering of the enclosed while
loop traversing the synaptic target segment of a specific spike
entry (TS) does not affect the progression. Eventually, all spike
entries in the register are processed and either delivered to their
synaptic targets or added to the auxiliary array. After the loop
over the spike register exits the algorithm delivers the remaining
entries in the auxiliary arrays to their targets.

4.2. Lagging access to spike ring buffers

This optimization exploits the idea of software pipelining
for spike delivery. In software pipelining [21, 22, 23] loops are
reformed in such a way that the instructions inside of the loop
are carried out with an offset of B > 1 and overlapped with each
other. For example, an original loop of L iterations {X;Y;}* over
two operations X; and Y; depending on index i is transformed
into {X;}? {XiY,-,B}IéJrl {Y}Ii—B+1~ By doing so, the operation X
inside of the central loop is from a different iteration than Y.

We adapt the reference algorithm such that access to
synapses and access to spike ring buffers is still carried out in
an alternating fashion but algorithmic progression is always
Brgp synapses ahead of spike ring buffers (lagRB). This means
when a ring buffer is accessed the synaptic information and
the respective pointers for the next Bgp spike ring buffers are
already available in local arrays. To this end, Bgrg Ssynapses

‘https://gcc.gnu.org/onlinedocs/gcc/0Other-Builtins. html

bwTS: Delivery of spikes with processing of spike en-
tries and corresponding target segments in batches of size
Brs. TS marks iteration over a synaptic target segment us-
ing a fixed count loop according to the target-segment size
ts_size. SYN marks access to a target synapse; RB marks
access to the spike ring buffer of the corresponding target
neuron. Based on REF.

Data: spike_reg, synapses

create arrays [cid, ts_size of size B_TS
<0
repeat spike_reg.Size() / B_TS times
fork — 0toB_TS — 1do

L lcid[k] < spike_reg[l + k].Icid

l—1+B_TS
fork —0toB_TS —1do
L ts_sizelk] <« synapses[icid[k]].GetTSSize ()

fork — 0toB_TS — 1do
TS repeat ts_size[k] times

SYN (target_rb, delay, weight) «
synapses|[lcid[k]].Send ()

lcid[k] « Icidlk] + 1

RB target_rb.AddValue (delay, weight)

process remaining entries in spike_reg

are initially accessed to retrieve the pointers to the correspond-
ing target neurons’ spike ring buffers as well as the synaptic
weights and delays (SYN). The retrieved synaptic information
is temporarily buffered in auxiliary arrays (target_rb, delay,
weight) of size Brg + 1. Once Bgp synapses have been accessed
such that the auxiliary buffers are almost full (if-condition
is met), the initialization phase ends and alternating access
to synaptic targets (SYN) and neuronal spike ring buffers (RB,
else-clause) starts, using the auxiliary arrays as ring buffers
and the indices i and j for writing to the arrays and reading from
the arrays, respectively. In the quantitative analysis (Section 5)
we refer to this optimization as lagRB.

As for bwRB*, leaving and re-entering of the enclosed
while loop traversing the synaptic target segment of a specific
spike entry (TS) does not interrupt the cyclic processing of the
auxiliary arrays. Eventually, all spike entries in the register
are processed and delivered to their synaptic targets, but the
auxiliary arrays still contain synaptic information that needs to
be delivered to the spike ring buffers.

4.3. Batchwise access to target segments

The previous two algorithms, bwRB* and lagRB, are
concerned with disentangling access to synapses and neuronal
spike ring buffers. They implicitly make hopping from one
synaptic target segment to the next more seamless as they
progress writing and reading the auxiliary arrays (target_rb,
delay, weight) irrespective of the boundaries of single target
segments. The optimizations of the present algorithm, bwTS,
directly target the iteration over spike entries in the spike
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bwTSRB*: Delivery of spikes combining processing
of spike entries and corresponding target segments in
batches of size Brs (bwTS) with access to target synapses
and neuronal ring buffers in batches of size Bgp, in-
cluding group prefetching of spike ring buffers (bwRB*).
TS marks iteration over a synaptic target segment using
a fixed count loop according to the target-segment size
ts_size. SYN marks access to an individual target synapse;
RB marks access to the ring buffer of the corresponding
target neuron; RB* marks group prefetching prior to ac-
cess. Based on REF.

Data: spike_reg, synapses

create arrays [cid, ts_size of size B_TS
create arrays target_rb, delay, weight of size B_RB
[0
i<—0
repeat spike_reg.Size () / B_TS times
fork <« O0toB_TS - 1do

L lcid[k] < spike_reg[l + k].Icid

l—1+B_TS
fork —0toB_TS —1do
L ts_sizelk] « synapses|icid[k]].GetTSSize ()

fork —0toB_TS - 1do

TS repeat ts_size[k] times
SYN (target_rbli], delayli], weight[i]) «
synapses[lcid[k]].Send ()
i—i+1

lcid[k] « lcid[k] + 1
if i == B_RB then

fori — O0OtoB_RB -1do
RB* L prefetch rarget_rb[i]
fori — OtoB_RB -1do
RB target_rb[i].AddValue (delayli],
weight[i])
B i<—0

process remaining entries in spike_reg and target_rb

receive register (spike_reg) in the outermost loop and the
concomitant processing of synaptic target segments of differ-
ent lengths in different memory locations. The quantitative
analysis (Section 5) refers to this set of optimizations as bwTS.

We adapt the reference algorithm to process spike entries
in the spike receive register in batches of size Bts, which in
turn entails batchwise access to Brg distinct target segments
(bwTS). Like in bwRB*, this optimization is based on a loop-
transformation method (Section 4.1) but targets a different part
of the algorithm. Moreover, we replace the while loop iterat-
ing over every target synapse of a specific target segment with
a fixed count loop (TS). This requires however that the length
of the target segment is available when entering the fixed count
loop. Here, we decide on a straightforward solution: the in-

formation is provided by the first target synapse of each tar-
get segment. To this end, we extend synapse objects with a
member variable to store the target-segment size, which needs
to be determined just once when all synapses have been cre-
ated (not shown in the algorithm); the public member function
GetTSSize () returns the size. Note that while the algorithm
only requires this capability for the first synapse of each target
segment, all synapse objects are equipped with the extra mem-
ber variable as they are stored in a container for homogeneous
objects (Section 3.1). In our reference implementation (Sec-
tion 2.1), we ensure that the extra member variable does not in-
crease the per-synapse memory usage by reducing the storage
size of another synaptic member variable, namely the synap-
tic delay. This does not affect the precision of results for our
benchmark network model as the reduced storage size is suf-
ficient to fully represent the homogeneous and relatively short
delays of the model (Section 2.2). This solution does, however,
not generalize to all types of network models as, for example, in
case of longer delays, an increase in per-synapse memory usage
due to the additional member variable might be inevitable.

For each batch of Brgs spike entries, the algorithm carries out
three consecutive for loops each with a fixed number of Brg it-
erations. In the first for loop iterating over Brg spike entries, the
locations of the first target synapses of the corresponding target
segments are extracted from the spike entries and buffered in
the auxiliary array Icid. In the subsequent for loop the Brg lo-
cations are used to access the first target synapses to retrieve
the corresponding target-segment sizes, which are buffered in
the auxiliary array ¢s_size. In the final for loop and the en-
closed fixed count loop, alternating access to synaptic targets
(SYN) and neuronal spike ring buffers (RB) is carried out like in
the reference algorithm. If the number of spike entries in the
spike receive register is not divisible by Brs without remainder,
the remaining spike entries are processed in a similar fashion
using three consecutive for loops, where the fixed number of
iterations is given by the number of remaining entries.

4.4. Combined batchwise access to target segments and spike
ring buffers

The combined algorithm bwTSRB* adopts the loop struc-
ture of bwTS, but the instructions inside the fixed count loop it-
erating over a specific synaptic target segment (TS) are adapted
according to bwRB*. The combined algorithm requires all aux-
iliary arrays of the two individual algorithms, where indices /
and k and index i are used as in bwTS and bwRB*, respectively.

5. Results

We quantitatively evaluate the effect of the three different
techniques of latency hiding bwRB*, lagRB, and bwTS on sim-
ulation time relative to the refactored code (Section 3.2), where
the optimization bwTS can be combined with either bwRB* or
lagRB because they modify different parts of the code. As the
combined optimizations may either support each other or in the
worst case reduce the impact of the best individual optimiza-
tion, we also present performance data for a combined scenario
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Figure 4: Cumulative change in simulation time relative to refactored code
disregarding communication as a function of number of MPI processes. Left
column DEEP-EST CM and right column JURECA CM: linear-log repre-
sentation for number of MPI processes M € {2; 4; 8; 16; 32; 64; 90} and
M € {2; 4; 8; 16; 32; 64; 128; 256; 512; 1,024}, respectively. Dark carmine
red dotted line at zero percent (REF, Section 3.2) indicates performance of ref-
erence code. First row, batchwise access to spike ring buffers (Section 4.1) with
batches of size 16 without group prefetching (bwRB, dashed light blue curve)
and with prefetching (bwRB*, solid light blue curve). Second row, software
pipelining with a lag of 16 (lagRB, turquoise curve). Third row, batchwise ac-
cess to target segments with batches of size 16 (bwTS, solid coral red curve),
for JURECA CM (right) further combined with batchwise access to spike ring
buffers using prefetching (bwRB*, same coloring as in top row: solid light blue
curve; see bwTSRB* for combined pseudocode). Shadings fill area to respec-
tive reference. Weak scaling of benchmark network model as in Figure 1.

of bwTS and bwRB*. Figure 4 summarizes the quantitative
results. The section concludes by demonstrating that the im-
proved performance is indeed a result of a reduction of clock
ticks per instruction retired (Section 5.1).

Plain batchwise access to spike ring buffers without group
prefetching (bwRB, Section 4.1) has no effect on the per-
formance on the DEEP-EST CM and enabling prefetching
(bwRB*) actually worsens the situation for small numbers of
MPI processes. The situation is entirely different on JURECA
CM which uses an older generation of processors. Here, plain
batchwise access has a negative effect on the performance
but group prefetching leads to an overall performance im-
provement. At larger numbers of MPI processes already the
batchwise processing increasingly improves performance and
the additional gain by group prefetching remains constant.
For tested batch sizes between 1 and 64, we observe the least
decline in performance for batch sizes of 8 or larger on DEEP-
EST CM and the best performance for batch sizes of 16 or
larger on JURECA CM (data not shown). However, a compre-
hensive analysis is outside the scope of this study; we do not
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claim that this observation generalizes to other architectures.

An alternative latency-hiding technique for the same part of
the code is lagged access to ring buffers (lagRB, Section 4.2),
where we use a lag of 16. The algorithm thus retrieves informa-
tion from a target synapse 16 steps ahead from the position in
the target segment where it currently accesses the correspond-
ing ring buffer, thereby decoupling these operations. Again we
observe almost no effect on the DEEP-EST CM. JURECA CM
exhibits an increasing gain only for large numbers of MPI pro-
cesses. For tested lags between 1 and 16, we observe little dif-
ferences on DEEP-EST CM and the best performance for lags
of 2 and larger on JURECA CM (data not shown).

The introduction of the spike-receive register [9] opens the
opportunity for batchwise processing of the register and the
synaptic target segments (bwTS, Section 4.3). The batchwise
processing of target segments has an increasing gain reaching
20% at 90 MPI processes on the DEEP-EST CM, and the total
gain reaches more than 40% on JURECA CM. For tested batch
sizes between 1 and 64, we observe little differences on DEEP-
EST CM and the best performance for batch sizes of up to 16
on JURECA CM (data not shown).

Finally, on JURECA CM we investigate a combined imple-
mentation of batchwise access to target segments and batchwise
access to spike ring buffers including group prefetching (bwT-
SRB¥*) as the two techniques modify different parts of the code.
We do not further consider lagged access to ring buffers (Sec-
tion 4.2), as lagRB is only effective for large numbers of MPI
processes, while its alternative bwRB* exhibits a sustained gain
over the full range. The lower right panel of Figure 4 shows that
bwRB* is effective already at small numbers of MPI processes
but continues to improve the performance of bwTS, leading to
a combined gain of 50% at larger numbers of MPI processes.

The preparatory refactoring described in Pronold et al. [9]
and the latency-hiding techniques investigated in this study
jointly improve simulation time with respect to the original
code (Figure 1). While refactoring is most effective for small
numbers of MPI processes where synaptic target segments
are long (Figure 2), latency hiding is most effective for larger
numbers of MPI processes where target segments significantly
shorten. The differential behavior of the combined technologies
leads to a sustained performance gain of 30% to 50% over the
whole range of investigated MPI processes.

5.1. Dependence of effectiveness on microarchitecure

The latency-hiding techniques introduced in Section 4
promise to speed up the overall code by reducing the latency
of memory access. Indeed our measurements show that our
particular application becomes substantially faster, despite
additional lines of code required to implement the techniques.
Profiling tools (Section 2.4) provide direct access to the la-
tency that processor instructions experience. This allows us to
investigate whether the new algorithms are faster due to the
reduction of latency. Specifically we are investigating clock
ticks per instruction retired (CPI), a metric available in the
tool VTune (Section 2.4). All algorithms exhibit a decrease in
CPI compared to REF (Figure 5), except for less than 32 MPI
processes bwRB* on DEEP-EST CM and bwRB for JURECA
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Figure 5: Relative change in clock ticks per instruction retired (CPI) during
spike delivery as a function of the number of MPI processes. Same arrangement
of panels and labeling as in Figure 4.

CM. Larger networks show larger gains and lagRB and bwTS
show similar behavior on both machines. The dependence on
network size is particularly pronounced for bwTS. This directly
relates to the decreasing length of target segments, diminishing
the algorithmic potential for ordering synaptic data for sequen-
tial processing. As bwTS addresses the bottleneck of hopping
from one target segment to the next, its effect increases as
target-segment lengths decrease. The characteristics of bwRB
(Section 4.1) and bwRB* on DEEP-EST and JURECA appear
inverted. This hints that the processor in DEEP-EST CM, in
contrast to JURECA CM, automatically prefetches the nec-
essary data on time. Adding additional explicit prefetching
instructions may interfere with the automatic prefetching and
hence degrade performance. While the changes in simulation
time (Figure 4) follow the changes in CPI, the reduction in sim
time does not fully reflect the success observed in CPI. All
latency-hiding techniques come with additional lines of source
code. This may lead to an increased number of processor in-
structions that the reduction in CPI has to make up for, but the
compiler may now also find more opportunities for reducing
the number of instructions.

6. Discussion

At the outset of this investigation stands the observation that
for a typical neuronal network the spike-delivery phase domi-
nates total simulation time in state-of-the-art simulation code
and that the time required for spike delivery increases under
weak scaling such that it still dominates at 1024 MPI processes
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(Figure 1). This article explores techniques to rearrange the el-
ementary algorithmic steps required to deliver the incoming es-
sentially random spike data to the thread-local targets such that
they can be more efficiently processed by conventional com-
puter hardware. Each of the techniques under consideration
is characterized individually, but some address different steps
of spike delivery. Combining the most promising techniques
achieves a significant performance boost.

The combined spike-delivery algorithm starts with the
thread-parallel sorting of the spike data from the MPI receive
buffer into a thread-specific data structure called spike receive
register (SRR), where sorting is performed according to host-
ing thread and synapse type of each spike’s synaptic targets.
This preparatory refactoring improves parallelization but is not
related to the optimization of cache performance on the level of
the individual threads. The technical companion paper [9] pro-
vides the detailed description of the SRR together with pseudo
code. Sorting into the spike receive register is followed by the
thread-parallel processing of the SRR in fixed-size batches cy-
cling through three stages (bwTS, Section 4.3): for each batch
of spike entries, collecting first the location and second the
length of the spike’s synaptic target segment in separate arrays
before continuing with the actual delivery as a third stage. In
the third stage, also synapses and corresponding neuronal spike
ring buffers are processed in batches (bwRB*, Section 4.1) by,
irrespective of target-segment boundaries, weight, delay, and
pointer to ring buffer, first collecting separate arrays for each
batch of synapses before adding the weights to the buffers.

As aresult of the redesign the time required for spike deliv-
ery is halved (reduced by factor of 2.1) for two MPI processes
compared to the original algorithm and reduced to a third (by a
factor of 2.9) for 1024 MPI processes. In the original algorithm,
the increased network sparsity at larger numbers of MPI pro-
cesses causes an increase in spike-delivery time by a factor of
4.5 between two and 1024 MPI processes. The new algorithm
reduces this to a factor of 3.3. As a consequence, simulation
time is reduced by 43% for low numbers of MPI processes, by
49% for 512 MPI processes, where communication is not yet
dominating, and by 28% for 1024 MPI processes, where com-
munication time starts to dominate overall simulation time. The
measurements were obtained using ParaStationMPI v5.2.2-1,
while initial tests using the more recent version v5.4 result in a
significant reduction in communication time (data not shown).
However, following up on this observation is not within the
scope of this manuscript due to JURECA CM being decom-
missioned. In summary, with the new algorithm spike delivery
still dominates the simulation time below 1024 MPI processes
under weak scaling, but it increases less rapidly such that now
even below 1024 MPI processes the major cause for the loss in
performance is the increase in communication time. A second
qualitative change sets in at 1024 MPI processes, where the ab-
solute simulation time is no longer dominated by spike delivery
but by communication time. Hence, the new algorithm over-
comes the previously reported barrier of spike delivery limiting
the performance on supercomputers (Figure 12 in 10). Now
progress can be made by optimizing communication, for ex-
ample, by exploiting the spatial organization of neuronal net-



works. Cortical neuronal networks are characterized by a local
coupling with a space constant of a few hundred micrometers
and delays in the range of a tenth of a millisecond combined
with long distance coupling between brain areas and delays be-
yond a millisecond. If cortical areas were represented on one or
a few compute nodes, the communication between nodes host-
ing different areas could be reduced to much larger intervals
than required between nodes hosting neurons of the same area.
Topology-aware distribution of neuronal networks across com-
pute nodes has been exploited in other simulation codes [44, 45]
but without taking into account different delay categories.

Performance profiling of the algorithms bwRB*, lagRB,
and bwTS indicates that they indeed reduce latency (Sec-
tion 5.1). In accordance with the measurements of sim times
(Section 5), which show that the techniques are more suc-
cessful on JURECA CM (Intel Haswell) than on DEEP-EST
CM (Intel Skylake), the relative reduction in the performance
metric clock ticks per instruction retired (CPI) is also more
pronounced on JURECA CM than on DEEP-EST CM. We
speculate that the improved cache utilization of the newer
generation processor (Skylake) renders bwRB* and lagRB
ineffective or even detrimental, at least in the regime up to 90
MPI processes investigated here. On JURECA CM the effect
on sim time increases beyond 128 MPI processes, which is
beyond the current capacity of DEEP-EST CM. Therefore,
emulating simulations on more than 128 MPI processes on
DEEP-EST CM using the NEST dry-run mode [40] may pro-
vide further insights. A comprehensive comparison between
the two generations of processors based on microbenchmarks
as presented in [46] for the related microarchitectures Intel
Broadwell and Intel Cascade Lake is out of the scope of this
study. It is our hope though that our efforts to present the
changes to code in an abstract fashion make this study relevant
for a broader computer science community and might even
inspire the definition of future microbenchmarks. The present
work focuses on the level of source code only. It may be illu-
minating to explore in future studies the effect of algorithmic
changes on the level of the resulting assembler code.

The incoming spike events of a compute node specify the
thread hosting the target neuron as well as the location of the
synaptic targets, but are unsorted with respect to the hosting
thread and synapse type. Nevertheless the present work shows
that the processing of spikes can be completely parallelized re-
quiring only a single synchronization between the threads at
the point where the spikes have been sorted according to target
threads and synapse types, which is when all spikes have been
transferred from the MPI receive buffer into the novel spike re-
ceive register. This suggests that spike delivery can fully profit
from a further increase in number of threads per compute node.
Due to the large number of outgoing synapses per neuron, early
work on distributed simulations of spiking neuronal networks
employing tens of compute nodes was concerned with the prob-
lem of efficiently delivering each spike emitted by a specific
source neuron on a specific MPI process to many targets on
all MPI processes [4]. With increasing parallelization using
more compute nodes and threads, however, each neuron has
ever fewer thread-local targets resulting in ever shorter synaptic
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target segments in the data structure storing the local synapses.
Therefore, later work concentrated on reducing the memory
overhead caused by the increasing number of shorter target seg-
ments [37]. However, shorter target segments are also a burden
computationally because memory locations need to be switched
often leaving little opportunity for vectorization. The present
study overcomes the problem of short segments by reorganiz-
ing the spike delivery algorithm such that it operates across the
boundaries of target segments and in this way becomes more in-
dependent of the degree of parallelization. Spikes are routed to
their thread-local targets in a batchwise fashion using the tech-
nique of loop transformation. This explicit declaration of vir-
tually independent code blocks apparently helps compilers to
generate efficient machine code.

Due to the simplicity of the neuron model of the bench-
mark and the lack of synaptic plasticity, the application has
little workload in terms of the propagation of neuron and
synapse dynamics and thus exposes bottlenecks in the delivery
of spikes to local targets and the communication between
compute nodes. The synaptic delay of about a millisecond
assumed in the present benchmark model is used in prominent
neuronal network models of the balanced random class [38]
and representative for the connectivity at the brain scale [1].
In models of the local network below a square millimeter of
cortical surface [cf. 47] the minimal delay (Section 2.1) is an
order of magnitude smaller than the delay considered in this
study. Consequently, the simulation of such models requires
a ten-fold increase in the number of communication calls and
therefore the communication phase takes up a larger fraction
of the total simulation time. Nevertheless, for a given spike
rate the amount of spikes that need to be delivered in a given
stretch of biological time is independent of the number of
communication calls. Therefore, we expect the optimizations
discussed in the present work to still be effective, while their
impact on total simulation time will be lower. Neuroscientists
have started to investigate models combining the local structure
of the brain with its organization over long distances [48]. The
minimal delay in such a brain-scale network is the minimal
delay in the local structure. Unless the placement of neurons on
compute nodes respects the architecture of the network, global
communication in intervals as for the local network is required,
limiting the success of optimizations of spike delivery.

Our analysis is restricted to static neuronal networks. In
such networks all synaptic connections and their weights are
determined at the time of network construction. In nature
synaptic efficacies change over time: the phenomenon called
synaptic plasticity. A further mechanism, removing and cre-
ating synapses, is called structural plasticity. A wide class of
models of synaptic plasticity can be formulated as an update
scheme driven by the presynaptic spike events in which the
synaptic weight is only computed for those times where it
becomes visible for the postsynaptic neuron [39]. In this way
the computations become part of the spike delivery phase
and contribute substantially to its duration. Depending on the
particular plasticity model, alongside the location of the ring
buffer, additional information on the target neuron needs to be
accessed. This may be the time of the last spike, the full record



of spikes since the last presynaptic spike, or the membrane
potential [49]. Our companion paper [9] discusses the resulting
tradeoff between memory consumption and speed. A domain
specific language like NESTML [29] could avoid cluttering the
model pool with solutions for different optimization goals by
providing directives influencing the balance between the gener-
ation of more compact or faster code depending on the needs.
How the more complex data handling for plastic synapses and
the floating point operations on the synaptic weights interact
with the batchwise processing needs to be evaluated.

The communication scheme between compute nodes as-
sumed in the present study sends for each spike a separate
event to each thread containing at least one target neuron. This
enables a straightforward readout of the MPI receive buffer
containing the incoming spikes (Section 3.2). However, for
typical cortical connection densities where each neuron has on
the order of 10,000 postsynaptic targets for simulations with
less than 10, 000 compute nodes and more than one thread per
node, compute nodes receive the same spike event multiple
times. This overhead may challenge the bandwidth of the com-
munication network and limit the speed of the communication
phase. Future work needs to investigate whether duplicate
spike events can be efficiently compressed such that the costs
of decompression in the spike-delivery phase are smaller than
the gain in the communication phase.

The present study analyses spike-delivery times and over-
all simulation times in a weak-scaling scenario. Neuroscien-
tists and industry may, however, also be interested in reducing
the simulation time of an application for a fixed size network
studied over long stretches of biological time as required for
system-level learning or for the capability to interact with the
real world in robotics. Therefore strong-scaling scenarios are
of interest. With an increasing number of threads, the num-
ber of target neurons and therefore synapses a thread needs to
take care of decreases. Consequently the amount of memory
a thread operates on decreases. This suggests that it becomes
easier for the core running the thread to predict memory access
and if the amount of cache memory per core decreases propor-
tionally to the number of cores faster execution is expected. In
this way, the combination of a highly parallel spike-delivery al-
gorithm with a many-core architecture overcomes the von Neu-
mann bottleneck of conventional applications. Thus our find-
ings reconsidering the spike-delivery algorithm support a more
positive view on the prospects of improving the performance
of neuronal network simulations by prefetching and pipelining
than the analytical results of [11, 12]. It remains to be seen
whether the optimizations by batchwise processing explored in
the present work become less relevant in situations where each
core needs to manage a small amount of memory anyway.

The study removes several bottlenecks in routing spikes in
a compute node to ever more distributed targets. The spike-
delivery phase of a simulation code for spiking neuronal net-
work remains a specific sorting problem in space and time, but
our study exposes that its fully parallelizable nature will cer-
tainly benefit from future fine-grained processing hardware.
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