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Multimodal investigation 
of the association between shift 
work and the brain 
in a population‑based sample 
of older adults
Nora Bittner1,2*, Horst‑Werner Korf1, Johanna Stumme1,2, Christiane Jockwitz1,2, 
Susanne Moebus3, Börge Schmidt4, Nico Dragano5 & Svenja Caspers1,2,6

Neuropsychological studies reported that shift workers show reduced cognitive performance and 
circadian dysfunctions which may impact structural and functional brain networks. Here we tested 
the hypothesis whether night shift work is associated with resting-state functional connectivity 
(RSFC), cortical thickness and gray matter volume in participants of the 1000BRAINS study for whom 
information on night shift work and imaging data were available. 13 PRESENT and 89 FORMER 
night shift workers as well as 430 control participants who had never worked in shift (NEVER) met 
these criteria and were included in our study. No associations between night shift work, three 
graph-theoretical measures of RSFC of 7 functional brain networks and brain morphology were 
found after multiple comparison correction. Preceding multiple comparison correction, our results 
hinted at an association between more years of shift work and higher segregation of the visual 
network in PRESENT shift workers and between shift work experience and lower gray matter 
volume of the left thalamus. Extensive neuropsychological investigations supplementing objective 
imaging methodology did not reveal an association between night shift work and cognition after 
multiple comparison correction. Our pilot study suggests that night shift work does not elicit general 
alterations in brain networks and affects the brain only to a limited extent. These results now need to 
be corroborated in studies with larger numbers of participants.

Shift work is a major challenge for the human circadian system and especially night shift work can provoke a con-
flict between the exogenous work schedule demands and an individual’s circadian rhythms defined as chronotype. 
Dysfunctions of the circadian system may be associated with lower mental and physical health1. Several previous 
studies focused on the relationship between shift work and cognition, but they have provided inconsistent and 
variable results2,3. A prospective cohort study led to the conclusion that “shift work chronically impairs cognition, 
with potentially important safety consequences not only for the individuals concerned, but also for society”4. This 
study has received ample attention by the press media (Shift work dulls your brain, BBC News, 4 November 2014; 
Long term shifts ages brains, Sky News, 4 November 2014 https://​www.​nhs.​uk/​news/​neuro​logy/​shift-​work-​ages-​
the-​brain-​study-​sugge​sts/). However, Machi, et al.5 investigated early carrier physicians and reported a decline 
in short-term memory after day and over nightshifts and a high incidence of disturbed sleep, while in another 
study cognitive flexibility during night shifts was not altered per se, but largely depended on the circadian phase 
of the individual6. No difference in late-life cognitive aging was observed between individuals with a history of 
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working shifts as compared to those who had typical day work schedules during midlife7. Additionally, Titova, 
et al.8 showed altered performance in present, but not former shift workers.

It has been proposed that cognitive impairment in shift workers may be a consequence of neuronal disrup-
tions, such as malfunctioning of brain regions involved in circadian rhythms4. Circadian misalignment has 
indeed been discussed to impact on neuronal pacemakers1 and to play a role in psychiatric disorders9. Further, 
the individual chronotype, i.e. the intrinsic, biological preference for an early or late sleep onset, has recently 
been shown to modulate functional connectivity (FC) of the large-scale default mode brain network involved 
in cognitive functions10. The individual chronotype may also have an impact on the ability to cope with shift 
work11,12, therefore constituting a potentially important influence. Alterations within neuronal networks associ-
ated with shift work may therefore be one explanation for cognitive performance differences.

Previous studies have shown a high variability in cognitive abilities in older adults13–15 which may be influ-
enced up to old ages by various factors16–19, such as education and lifestyle20,21. Here we tested whether shift-work 
is related to neuronal differences and therefore another factor for accelerated brain and cognitive aging utilizing 
the population-based 1000BRAINS study which was designed to examine the variability of brain phenotypes 
during the course of aging with regard to influencing factors.

To this end we analyzed resting state functional connectivity (RSFC) derived from magnetic resonance 
imaging (MRI) since a previous study showed that the individual chronotype was related to RSFC of the 
default mode network10. RSFC has been used as a marker for general functional brain architecture and intrinsic 
communication22,23. It is involved in cognitive abilities, which has not only been shown for higher-order cog-
nitive networks (e.g. fronto-parietal, ventral and dorsal attention networks), but also for primary processing 
networks24 such as the visual and sensorimotor network. Moreover, cognitive performance differences seem to 
largely depend on the communication and cooperation within these functional networks, as well between these 
functional networks24,25. This allows hence to investigate, e.g. why some older adults experience greater cogni-
tive decline than others. A highly segregated network, i.e. showing high within-network RSFC, is thought to be 
particularly specialized and effective, while highly integrated networks largely depend on other networks and 
are thought to be reduced in their specificity. More segregated networks may also constitute a more resilient 
functional state against certain types of changes such as aging, neurodegenerative disease26,27 or circadian disrup-
tion through shift work. Further, the explanatory power of network-wise RSFC for cognitive performance has 
already been shown within a subsample of the here investigated 1000BRAINS cohort24. We therefore chose to 
test for differences in within- as well as between-network RSFC and as well as the relation between integration 
and segregation.

Importantly, cognitive performance as a complex, higher-order brain function comprises several brain struc-
tural correlates, particularly within the cortex28–30. An extensive body of research established the relationship 
between cortical thickness and cognitive performance31 in adolescents28,32, younger and older adults33 as well 
as in patients suffering from neurodegenerative disorders34,35. Further, cortical thinning has been proposed as a 
surrogate marker for the early diagnosis of Alzheimer’s disease34. Cognitive decline in ageing and neurodegenera-
tive diseases further affects subcortical structures, such as the hippocampus36–38. A previous study addressed the 
problem whether jetlag in flight attendants with short and long recovery periods is associated to volume reduction 
of the right temporal lobe39. In those with short recovery periods a correlation was found between saliva cortisol 
levels, lower volume of the right temporal lobe and longer reaction times in a visual-spatial memory task. Taking 
these previous results into consideration we tested for shift work related differences in cortical thickness across 
the whole cortical surface, as well as for differences within subcortical gray matter including the hippocampus.

The objective brain investigations were supplemented by a large set of neuropsychological examination indica-
tive for performance in several cognitive domains. Based on previous literature, we paid particular attention to the 
domains of attention, short-term and working memory, processing speed8,40, as well as executive functions41,42. 
Aiming for a complete examination, we also employed tests shown to be sensible to age-related decline in cogni-
tive domains13–15 including visual-spatial memory, vocabulary, creative thinking and reasoning13,43.

To test the hypothesis whether night shift work is associated to differences in brain parameters and cognitive 
performance, we addressed three questions:

1. Do present shift workers show differences in brain parameters in comparison to controls? We there-
fore compared NEVER shift workers with PRESENT shift workers regarding (i) RSFC, (ii), cortical thickness 
and (iii) volume of subcortical structures. Concurrently, both groups were compared regarding their cognitive 
performance.

2. Do brain parameters (neuronal correlates of cognition) differ between previous shift workers and non-shift 
workers? This question related to the problem whether the observed differences may be reversible4. Hence, we 
compared NEVER shift workers with FORMER shift workers regarding brain parameters, as well as cognitive 
performances.

3. Is a longer employment in shift work (measured in number of shift work years) associated to a stronger 
alteration in brain parameters, accompanied by lower cognitive performance? We supplemented this by cor-
relation and mediation analyses to establish the triangular association between shift work, differences in brain 
parameters and cognitive performance.

Materials and methods
Participants.  Data were collected from participants of the 1000BRAINS study43, recruited from the Heinz 
Nixdorf Recall study44. The study was approved by the Ethics Committee of the University of Essen (Germany). 
All participants gave written informed consent in agreement with the declaration of Helsinki prior to participa-
tion. To test the hypothesis whether night shift work is associated with resting-state functional connectivity, 
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cortical thickness and gray matter volume 532 participants (287 men and 245 women) of the 1000BRAINS study 
for whom information on night shift work and imaging data were available were included in this study.

Shift work parameters were obtained in an interview in which the participants were asked whether they 
worked in shift at any time of their life (“Yes”/“Never”), with shift being defined as a work schedule outside the 
period between 7am to 6 pm. Participants who answered “Never” served as control group. Participants who 
answered “Yes” were asked (i) which shift schedule they were engaged in (rotating shifts without night shifts, 
rotating shifts including night shifts or early shifts, late shifts and night shifts only), (ii) how many years they 
worked in shift, and (iii) whether they worked in shift at time of data acquisition. The present study includes 
participants who worked either in night shifts only or in rotating shifts including night shifts, since night shifts 
are the greatest challenge for the human circadian system and therefore have the greatest impact on health 
parameters1.

According to the shift work status, participants were divided into three groups. The first group comprised 
participants, who stated that they had never performed shift work, and constitutes the control group (NEVER 
shift workers, n = 430, 207 male, 223 females). The second group comprised participants, who worked in night 
shift or rotating shifts including night shift at the time of data acquisition or within the last year before. This 
group is defined as PRESENT shift workers and comprised 13 participants (9 males, 4 females). Two participants 
worked in night shifts only, the remaining 11 worked in rotating shift systems, which included night shifts. The 
third group comprised 89 participants who had stopped night shifts two or more years before the time point of 
data acquisition and is defined as FORMER shift workers (71 males, 18 females). Ten participants had worked 
only in night shift, while all others had worked in rotating shift systems, including night shifts. Characteristics 
of these groups are depicted in Table 1.

Imaging.  To test whether shift work is associated with measurable, objective differences in functional con-
nectivity and morphology imaging data were analyzed which were collected using a 3T Siemens Tim-Trio MR 
scanner with a 32-channel head coil (Erlangen, Germany) and different MR sequences. For the surface recon-
struction, cortical thickness and subcortical gray matter volumes analyses, a 3D high-resolution T1-weighted 
magnetization-prepared rapid acquisition gradient-echo (MP-RAGE) anatomical scan was acquired with 
176 slices (slice thickness 1  mm, repetition time (TR) = 2250  ms, echo time (TE) = 3.03  ms, field of view 
(FoV) = 256 × 256 mm2, flip angle = 9°, voxel resolution 1  mm3) lasting about 5 min. Resting-state functional 
MRI measurements were performed using a blood-oxygen level dependent (BOLD) sequence with 36 trans-
versally oriented slices, measured using a gradient-echo echo planar imaging (EPI) sequence (slice thickness 
3.1 mm, TR = 2200 ms, TE = 30 ms, FoV = 200 × 200 mm, voxel resolution 3.1 mm3) for about 11 min, resulting 
in 300 volumes. During this sequence, participants were instructed to keep their eyes closed, be relaxed, let their 
mind wander, and not fall asleep. The latter was secured by post-scan debriefing (for a detailed description of the 
1000BRAINS study protocol, see Caspers et al.43).

Preprocessing of Resting‑State functional images.  Preprocessing of resting-state data was per-
formed using FSL [FMRIB Software Library: http://​www.​fmrib.​ox.​ac.​uk/​fsl45]. Participants’ functional images 
were motion corrected and co-registered to the individual anatomical scan using FMRIB´s Linear Image Regis-
tration tool [MCFLIRT and FLIRT46]. Then, slice time correction [slicetimer47], brain extraction [BET48], inten-
sity normalization and spatial smoothing (5 mm at FWHM) [SUSAN49] was performed. Data-driven identifica-
tion and removal of motion-related components from functional MRI data [ICA-based Automatic Removal of 
Motion Artifacts; ICA-AROMA50] was done. Further, global signal regression51–53 as well as bandpass filtering 
(0.01–0.1 Hz) was applied. Then all functional images were registered to the standard space template of MNI 152 
using FSLs nonlinear registration tool [FNIRT54].

The “check sample homogeneity using standard deviation across sample” analysis provided by the Computa-
tional Anatomy Toolbox [CAT1255] was used to check whether individual images matched the MNI152 template. 
All participants included in this study were manually checked to control for possible outliers. Volume-wise severe 

Table 1.   Descriptive group statistics. Group statistics are given in unadjusted means (Standard deviation) 
for purposes of interpretability. Alcohol consumption was measured in grams of pure alcohol per week. For 
the ordinally scaled variables of coffee and black tea consumption the following scale was used: 1.00 = Almost 
never, 2 = 1–3 times per month, 3 = 1–3 times a week, 4 = 4–6 times a week; 5 = daily.

Variable
PRESENT (n = 13)/MATCHED controls 
(n = 13) FORMER (n = 89)/MATCHED controls NEVER (n = 430)

Age (years) 60.99 (SD = 2.27)/61.22 (SD = 3.90) 67.70 (SD = 6.40)/68.33 (SD = 6.49) 67.06 (SD = 6.49)

Sex 9 males, 4 females/9 males, 4 females 71 males, 18 females/74 males, 13 females 207 males, 223 females

Education 5.92 (SD = 1.89)/5.38 (SD = 0.77) 6.38 (SD = 1.96)/6.29 (SD = 1.90) 6.35 (SD = 1.94)

Smoking (Pack-years) 29.27 (SD = 23.88)/9.22 (SD = 14.29), 
p = 0.006 20.42 (SD = 30.71)/17.28 (SD = 21.48) 12.31 (SD = 18.78)

Alcohol consumption 96.57 (SD = 120.95)/68.77 (SD = 107.37) 86.82 (SD = 108.15)/85.65 (SD = 172.68) 70.21 (SD = 130.77)

Coffee Consumption 4.50 (SD = 1.00)/4.69 (SD = 0.86) 4.46 (SD = 1.21)/4.48 (SD = 1.19) 4.55 (SD = 1.08)

Black Tea consumption 2.25 (SD = 1.36)/1.77 (SD = 0.93) 2.10 (SD = 1.34)/1.93 (SD = 1.28) 2.10 (SD = 1.43)

Shift work years 19.77 (SD = 12.11)/0 10.07 (SD = 10.06)/0 0

http://www.fmrib.ox.ac.uk/fsl
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intensity dropouts were checked for each participant by generating p values for spikes (DVARS) on the already 
preprocessed functional data as established by Afyouni and Nichols56.

Resting‑State functional connectivity.  To investigate resting state functional connectivity (RSFC) in 
large scale brain networks, which have recently been found to be sensible to circadian rhythmic and individual 
chronotype10, we used the cortical parcellation of57. This parcellation scheme was established based on intrinsic 
RSFC from 500 participants (checked with a 500 subjects replication cohort). Whole-brain RSFC was clustered 
into 7 networks based on their similarity of functional activation over all participants. Similarity of functional 
activation is here defined by time-wise coactivation between spatially distributed regions. Thus, regions, which 
are likely coactivated, belong to the same functional network. The resulting 7-network parcellation mainly dis-
tinguishes known functional RS networks, namely visual- (VN), sensorimotor- (SMN), limbic- (LIMN), fron-
toparietal- (FPN/control network), default mode- (DMN), dorsal (DAN)- and ventral attention (VAN) network 
(Fig. 2A). The 7 networks comprise 400 parcels in total, each of which can be allocated to one network, such 
that one network comprises several different parcels (i.e. regions). Interindividual variance within the cluster of 
parcels (i.e. networks) due to transformation from subject to standard space was addressed by eroding using FSL 
[fslmaths -ero58]. Voxels with less confidence of network affiliation were discarded as a consequence.

The association between shift work and network-wise RSFC was investigated using graph-theoretical 
parameters24,59. Therefore, a whole brain graph (i.e. connectome, Rubinov and Sporns60) was built based on 
individual functional data. Here, each parcel was defined as a node. Each node was reflected by a BOLD mean 
time series spanning 300 time points, i.e. the time series of all voxels corresponding to that node (i.e. to that 
region) were averaged based on the preprocessed RS-fMRI data [fslmeants58]. Edges were then defined as the 
functional connection between two nodes, which was calculated using FFT Permutation testing61 of the respec-
tive BOLD mean time series of the two nodes. Based on the 400 parcels, 400 × 400 FFT correlation coefficients 
were determined, each reflecting the functional connection between two nodes (i.e. between two regions). 
Using Fishers r-to-z transformation these coefficients were transformed into z-scores containing both positive 
and negative correlations. Since the integration of positive and negative weights into the estimation of strength 
values may possibly lead to a mutual suppression, we only performed estimations with positive correlations.

In RSFC the calculation of functional connections is based on correlations between minimal BOLD activity 
fluctuations, leaving a risk of measuring noise rather than of true signal. To improve the signal to noise ratio, 
the statistical significance of each correlation coefficient was tested by randomizing the observed timeseries 
by taking its Fourier transform, scrambling its phase and then inverting the transform61. After repeating this 
procedure 1000 times, a permutation test was applied and non-significant edges at p > 0.05 were discarded. As a 
consequence, networks may consist of inter-individually different amounts of edges. To ensure that comparisons 
between participants would not be distorted by these varying amounts of edges, we focused on the strength 
value as a reliable network parameter, robust against this issue62. For a more detailed discussion of this topic see 
Stumme et al.24.

The software bctpy with network parameters as defined in Rubinov and Sporns60 was used to quantify the 
RSFC of networks. Strength values were computed for each node as the sum of connectivity weights attached to 
that node. Based on these strength values, three different RSFC parameters were calculated for each of the seven 
networks described above. We calculated composite within- and inter-network RSFC for each participant, to 
limit the number of pairwise comparisons:

(i) Within-network RSFC was computed as the mean connectivity of edges between all pairs of nodes belong-
ing to the same network. The sum of all edge weights of all nodes within a network was calculated and divided 
by the number of edges in that network, thus accounting for individually varying number of nodes.

(ii) Inter-network RSFC was computed as the sum of connectivity of edges from each node within the network 
to all nodes outside the network, divided by the total number of edges.

(iii) Between-network RSFC was computed as the sum of all edges between pairs of nodes between two 
specific networks, divided by the number of edges belonging to both networks.

Additionally, a combined quantitative ratio was determined to capture the within-network RSFC in relation 
to the inter-network RSFC:

Using this ratio score, which was employed by Chan, et al.25 and refined by Stumme, et al.24 the network’s seg-
regation can be quantified. Specifically, a ratio-score of 1 implies maximal network segregation (high within- and 
low inter-network RSFC), whereas a ratio-score of − 1 indicates maximal network integration (low within- and 
high inter-network RSFC). A score of zero indicates a balanced system.

Preprocessing of structural imaging data.  The 3D anatomical images were processed using the auto-
mated surface-based pipeline of the FreeSurfer Software package63 (version 6.0, Athinoula A. Martinos Center 
for Biomedical Imaging). A detailed description of all steps included in the streamline was provided by Dale 
et al.64 and in the FreeSurfer documentation at http://​surfer.​nmr.​mgh.​harva​rd.​edu. First, segmentation into gray 
matter (GM), white matter (WM) and cerebrospinal fluid (CSF), motion correction, intensity normalization and 
removing of extra-cerebral voxels (non-brain tissue) was done using CAT1255. The resulting preprocessed vol-
umes were fed into the default surface-reconstruction pipeline “recon-all” of FreeSurfer, where transformation 
into Talairach space, the tessellation of GM/WM boundary, cortical surface reconstruction64,65 and correction 
of topological defects was performed. To reconstruct the cortical surface, first the so-called “white” surface was 
generated at the interface of WM and GM. Then, the pial surface was created at the interface between GM and 

within−network RSFC − inter−network RSFC

within−network RSFC + inter−network RSFC

http://surfer.nmr.mgh.harvard.edu
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CSF. The final mesh model of the pial surface is tessellated into triangles and consists of about 120,000 vertices 
per hemisphere with an average surface area of 0.5 mm2. Cortical thickness (CT) was then measured by finding 
the shortest distance between a given vertex on the reconstructed pial surface and the respective corresponding 
vertex on the GM/WM boundary (“white”) surface and vice versa66. Finally, averaging both values resulted in 
about 120,000 CT values per hemisphere. For each vertex, the cortical thickness can then be related to influenc-
ing variables, such as shift work.

Subcortical structures were segmented using the automatic segmentation provided by FreeSurfer67 as well. 
Here, subcortical GM is automatically segmented into different volumes. Then, a neuroanatomical label is 
assigned to each volume based on probabilistic information estimated from a manually labeled data set. Sub-
cortical volumes comprised the thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens 
nucleus, bilaterally67.  Total subcortical and total GM volume were examined.

Neuropsychological performance.  To assess whether night shift work affects cognitive performance we 
selected several neuropsychological tests from the large battery provided by the protocol of the 1000BRAINS 
study43. To cover the main domains and to include tests that represent cognitive abilities which have previously 
been associated with shift work4 we particularly focused on the domains of attention, working memory, pro-
cessing speed and executive function. The domain of selective attention was covered by the “Aufmerksamkeits-
Konzentrations-Test” [AKT (Time)] in which the time participants needed to cross out target figures from simi-
lar distractor figures, was measured68. Working memory was investigated using a non-verbal, as well as a verbal 
working memory test: Non-verbal (spatial) working memory was assessed using the Corsi block-tapping test 
(CBT)69 in which the participants needed to reproduce a sequence of blocks (increasing from 2 to 9 blocks each 
trial) on a board of 9 blocks in equal [CBT (Forward)] or reverse order [CBT (Backward)]. Number of maximal 
correctly reproduced blocks was measured. To address verbal working memory, we chose the verbal equiva-
lent, the Zahlen-Nachsprechen-Task [ZNS; from Nürnberger Alters-Inventar70]. Here, a digit span is read to the 
participant with complexity increasing from 2 to 9 digits in each trial. The maximal digit span was measured, 
which the participant was able to reproduce in equal [ZNS (Forward)] as well as reverse order [ZNS (Backward)]. 
Further, visual working memory was tested using the Visual pattern (Jülich version; similar to: Della Sala et al., 
1997) test, where the total number of correctly memorized matrix patterns of black and white squares with 
increasing complexity was measured. Processing speed was assessed using the Trail-Making-Test [taken from 
CERAD-Plus;40]. Task A (TMTA) measures the time, the participants need to connect randomly arranged digits 
printed on a piece of paper in ascending order as fast as possible. Task B (TMTB) measures the same, but the 
participants need to connect digits and letters alternatingly in ascending order, which invokes task-switching 
processes between the concept of letters and of digits. Additionally, the time difference between task A and B was 
calculated [TMTBA (Switching)], reflecting the cost function for the higher cognitive demand of task B, which 
is indicative for concept shifting performance in the domain of executive function. The second task reflecting 
executive function was given by the German “Farb-Wort-Interferenz-Test”, similar to the Stroop test [Jülich 
version; similar to41,71]. In the first step [Stroop (Reading)], time needed to read color words printed in black ink 
as fast as possible was taken. In the second step [Stroop (Naming)], time needed to name the color of colored 
squares was measured. Third, the participants were presented with color words printed in a different color than 
the color word refers to [Stroop (Selectivity)]. Time needed to name the color in which the color word is printed 
was taken. While the first two tasks were examined as measures of processing speed, the last task involves the 
process of inhibition, which is also called interference of tasks. The cost function for this interference task (Task 
3 minus Task 1), reflects the ability to inhibit automatic processes and therefore executive performance [Stroop 
(Interference)].

Furthermore, we analyzed cognitive tests employed by the 1000RBAINS protocol, which have been rarely 
employed in studies of shift work, e.g. the Wortschatztest72 measuring vocabulary, i.e. the total number of cor-
rectly identified real words within rows of pseudo words. Figural fluency/creativity was examined with the Fünf-
Punkte-Test (Jülich version; similar to:73) measuring the total number of unique designs created by connecting 
5 dots (3 min). Figural memory was examined using the Benton test74, examining the total number of errors 
made during the free recall of 20 previously presented figures. Finally, another domain assessed in 1000BRAINS 
was reasoning (Leistungsprüfungssystem 50 + (Subtest 3)75, where irregularities in serials of geometric figures 
needed to be tagged (5 min). In total this resulted in a large battery of cognitive parameters belonging to 12 
neuropsychological tests, such that we accepted one missing value per participant for cognitive analyses.

Chronotype.  The chronotype of each participant was determined by calculating the mid sleep on free days 
(MSF), a value introduced by Roenneberg et al.76 based on the participants´ answers to the questions when they 
would get up and go to bed if they were able to design their day freely according to their own comfort. MSF is the 
midpoint between wake-up and go-to-bed time and is given in hours (h) and minutes (min).

Sample collection and statistical analyses.  For all four domains investigated in the present study, (1) 
RSFC, (2a) morphology of cortical thickness, (2b) morphology of gray matter subcortical volume, and (3) cogni-
tive performance, the same analysis procedure was employed, which will be described in the following: We first 
examined a main effect of shift work, then we compared the shift work groups to MATCHED samples and finally 
we compared shift work groups to RANDOM samples.

Main effect of shift work.  To evaluate whether shift work has a general impact on brain function, struc-
ture and cognitive performance we first compared the two shift working groups (PRESENT and FORMER) to 
the whole control group of NEVER shift workers. To this end, we evaluated the main effects of shift work group 
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in two multivariate between-subjects-analyses of variance (ANOVA) with the independent factors sex (male, 
female) and shift work group (PRESENT, FORMER, NEVER) as well as age and education as covariates. Edu-
cation was defined by the international standard classification of education (ISCED)77. The first ANOVA was 
set up as a multivariate ANOVA and used all RSFC-parameters as dependent variables. The second MANOVA 
used all subcortical volumes as dependent variables. To evaluate cognitive performances, we employed several 
univariate ANOVAS examining each cognitive task as dependent variable respectively, using the same setup with 
independent factors sex (male, female) and shift work group (PRESENT, FORMER, NEVER) as well age and 
education as covariates. This was done since some participants lacked data in one of the cognitive tests. Calcu-
lating one multivariate analysis of variance using all cognitive tests as dependent variables would have further 
reduced the sample size of the PRESENT shift workers. To evaluate effect sizes partial eta squared was used.

Since the group of NEVER shift workers was much larger (n = 430) than the groups of PRESENT shift workers 
(n = 13) or FORMER shift workers (n = 89), the statistical power for direct group comparisons was rather small 
for a precise estimation of the effect size, particularly within PRESENT shift workers.

We therefore implemented two different approaches for group comparisons.

Random samples.  To take advantage of our rich sample of control participants (NEVER shift workers) we 
first selected 1000 random samples of the 430 control participants (RANDOM controls) and compared these 
with the two groups of PRESENT and FORMER shift workers, independently. This approach was motivated by 
the advantage that bootstrap techniques offer in light of small sample sizes78,79. Here, in comparison to finding 
matching controls, controls are randomly drawn from the population to resample how a randomly resampled 
group of controls can be compared to the shift workers. Random samples were drawn using the function “ran-
domsamples” (“Zufallsstichprobe”) implemented in R [80; https://​www.R-​proje​ct.​org/], which was then repeated 
1,000 times. For each iteration of drawing a random sample, all NEVER shift workers were available (sampling 
with replacement). For each of the random samples (RANDOM controls), mean values of all 21 RSFC parame-
ters and mean performance in the 12 cognitive tests were taken, which were than compared to the means for the 
respective variable of the PRESENT as well as the FORMER shift worker group. Means of the PRESENT shift 
workers were tested against each random sample using Mann–Whitney-U-tests with an alpha-level of α = 0.05 
(two-tailed). Means of the FORMER shift worker group were tested against each random sample using Analysis 
of variance (ANOVA), corrected for age, sex and education, using the same alpha-level (two-tailed). The per-
centage of comparisons out of 1,000 showing a significant difference between the random samples and the sam-
ples from both PRESENT shift workers and FORMER shift workers was taken. An alpha level of 0.05 was gener-
ally considered significant, i.e. more than 95% of the 1000 comparison between RANDOM controls and 
PRESENT or FORMER shift workers, respectively, needed to show a significant difference. We applied an addi-
tional correction for multiple comparisons within each domain (please see “Correction for multiple compari-
sons”). The alpha level considered significant for the RSFC parameters was pRSFCcorr = 0.002381, such that 99.8% 
of the comparisons needed to be significant. For cognitive parameters, the alpha level was pCOGNITION-
corr = 0.01 and hence 99.0% of the comparisons needed to be significant. If Mann–Whitney-U-tests (NEVER 
versus PRESENT) or ANOVA (NEVER versus FORMER) reached the respective statistical threshold, we deter-
mined whether the random sample of NEVER shift workers, PRESENT shift workers or FORMER shift workers 
had higher mean scores. For comparison between NEVER and PRESENT shift workers we chose Mann–Whit-
ney-U-tests as the non-parametric equivalent to t-tests due to the small sample size and calculated Pearson’s 
correlation coefficient as r = Z√

n
 using the standardized test statistic Z and the sample size n. For all analyses of 

variance partial eta squared as calculated within SPSS was used as effect size.

Matched samples.  In a second more clinically motivated approach, we defined matched groups for each 
of the two shift working groups: From the 430 NEVER shift workers we selected participants comparable in age, 
sex and education. Matching was done by propensity score matching using the “match-it”-algorithm81,82 imple-
mented in R for the two shift working groups independently. Hence, 13 matching partners were found for the 
group of PRESENT shift workers. For the group of 89 FORMER shift workers, 87 matching partners were found.

For each matched pair of groups (NEVER versus PRESENT, NEVER versus FORMER) we compared the 
mean of the shift working group for each variable against the mean of the matched control group using non-
parametric Mann–Whitney-U tests (two-tailed, α = 0.05). We chose non-parametric tests since the sample size 
of PRESENT shift workers was limited and network-wise RSFC as well as cognitive performance data was not 
normally distributed. Pearson´s correlation coefficient was calculated as effect size as described above.

Group comparisons of cortical thickness.  To examine possible associations between shift work and the 
structure of specific cortical regions we chose a vertex-wise analysis along the whole cortical surface. Since it 
was not possible to draw 1,000 random samples of NEVER shift workers within FreeSurfer and to compare them 
against PRESENT or FORMER shift workers, we took a different approach to investigate possible associations 
between shift work and regional variations in cortical thickness.

First, we carried out two univariate general linear models, as implemented in QDEC, a graphical user interface 
provided by FreeSurfer63. First, PRESENT shift workers were compared to all NEVER and then FORMER shift 
workers were compared to all NEVER shift workers, both times correcting for age, sex and education.

For the MATCHED analysis, we compared pairs of matched controls of NEVER and PRESENT and NEVER 
and FORMER shift workers against each by means of QDEC, a graphical user interface implemented in Free-
Surfer using general linear models. Group was given as a factor, and age, sex and education as covariates, while 
vertex-wise cortical thickness was the dependent variable. We defined a cluster-forming threshold of α = 0.001 

https://www.R-project.org/
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(two-tailed) and corrected for multiple comparisons using Monte Carlo Null distributions with α = 0.05. The 
threshold of α = 0.001 was chosen since it corresponds more closely to a type-1-error-probability of 5%83.

Second, we tested for an association between years of shift as an explanatory variable and vertex-wise cortical 
thickness as the dependent variable within the general linear model, while introducing age, sex and education 
as covariates. This was done independently for PRESENT and FORMER shift workers.

Linear association with the number of shift years.  To determine whether the number of shift years 
was associated with alterations of any parameter investigated here, we calculated multiple linear regression anal-
yses within IBM SPSS Statistics 26 (https://​www.​ibm.​com/​de-​de/​analy​tics/​spss-​stati​stics-​softw​are) using age, 
sex and educational level (covariates) and the number of shift years as explanatory variables and (i) all network-
wise RSFC parameters, as well as (ii) gray matter volume of subcortical structures, and (iii) all cognitive perfor-
mance scores using two-tailed tests. Network-wise RSFC parameters mostly resampled a normal distribution, 
whereas cognitive performance scores deviated more from normal distribution. There was no general shift to 
one side of the Gaussian curve, and therefore general transformation of all cognitive scores was no solution 
to this issue. Since it is mostly agreed that linear regression can be used despite non-normality84,85 and our 
approach is exploratory, we continued calculating linear regressions.

Mediation analyses.  We hypothesized that the association between shift work and cognitive performance 
may be driven by neuronal differences. So far, we examined the association between shift work group and num-
ber of shift work years with RSFC or brain morphology (cortical thickness, gray matter volumes) or cognitive 
performance independently. We additionally examined the triangular association between (i) shift work, (ii) 
RSFC or brain morphology and (iii) cognitive performance. To this end, partial correlations corrected for age, 
sex and education between all RSFC parameters and cognitive performances were calculated.

We further employed mediation analyses to investigate whether the link between (X) shift work and (Y) 
cognitive performance may be mediated by (M) brain morphology (Fig. 1).

Mediation analyses were only calculated for those cognitive performances, which showed a significant asso-
ciation (before Bonferroni correction) to shift work, as this link is a prerequisite, that a mediation effect can be 
present.

Group differences.  The first series of mediation analyses were calculated with shift work group (PRESENT, 
FORMER, NEVER) as explanatory factor (X).

Cognitive performance that differed between shift work groups were working memory [digit span, i.e. ZNS 
(Forward)], processing speed [Stroop (Naming); Stroop (Reading)] (ANOVAS) as well as processing speed 
(TMT-A), and concept shifting (TMT-BA) (MATCHED comparisons) and therefore used as outcomes (Y) for 
all mediation analyses.

Regarding morphology, no association between shift work and cortical thickness was found. For subcorti-
cal volumes, ANOVAS indicated an association between shift work and the left thalamus. Hence, gray matter 
volume of the left thalamus was entered as mediator within the first series of mediation analyses replacing RSFC 
of the visual network.

Shift work years.  The next series of mediation analyses used the number of shift work years as explanatory 
factor (X). Since no association between years of shift work (X) and cognitive performance (Y) was found in 
PRESENT shift workers, the prerequisite that a direct association between X and Y is given was not fulfilled and 
no mediation analyses were calculated.

In FORMER shift workers, an association between shift work years and performances in selective attention 
(AKT), reasoning, processing speed (Stroop) and susceptibility for interference [Stroop (interference)] were 
found and therefore used as outcomes (Y) for the second series of mediation analyses. Gray matter volume of 
the left thalamus was used as mediator (M).

Figure 1.   Representation of the mediation analyses, were the triangular association between Shift work (x), 
brain Morphology as a mediator (m) and Cognitive performance as outcome (y) is tested. Arrows “a” and b” 
via “M” represent the indirect effect of shift work via M on cognitive performance, while “c” describes a direct 
association.

https://www.ibm.com/de-de/analytics/spss-statistics-software
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Multiple comparison correction.  Between NEVER and PRESENT and between NEVER and FORMER 
shift workers 21 group comparisons and 21 regressions for network-wise RSFC parameters were calculated. This 
would have led to a Bonferroni correction of 0.05/21 = 0.002381 in each group.

For all analyses regarding volume of 7 subcortical structures within each hemisphere we used a Bonferroni 
correction of 0.05/14 = 0.0036 in each group.

Further, since all cognitive parameters belong to 12 independent tests, a Bonferroni correction led to a cor-
rected p value of 0.05/12 = 0.004. For cortical thickness, NEVER were compared to PRESENT and to FORMER 
shift workers for both hemispheres of the brain and a corrected p-value of p = 0.001 was applied (as described 
above).

However, regarding the small sample size of the PRESENT shift working group it is not to be expected that 
any association would reach this significance level. We therefore compare the results with the Bonferroni cor-
rected p-values to give a statistical guideline. We also still discuss results, which did not reach this significance 
threshold and focus to this end on effect sizes to further guide the interpretation of the results. We consider this 
appropriate since the reliance on effect sizes and confidence intervals gains more importance within cognitive 
psychology in comparison to reliance on p values86–88.

Results
Descriptive statistics.  Control participants, i.e. NEVER shift workers were on average 67 years old. PRE-
SENT shift workers were on average 61 years old, FORMER shift workers were on average 68 years old. There 
were no differences between the groups in terms of lifestyle, except for PRESENT shift workers showing signifi-
cantly higher pack-years of smoking than MATCHED controls (Table 1).

Resting‑state functional connectivity.  Analysis of variance.  To examine a significant main effect of 
shift work on RSFC a multivariate analysis of variance (ANOVA) was employed. We used sex (male, female) and 
shift work group (NEVER, PRESENT, FORMER) as independent factors, age and education as covariates and 
the 21 RSFC parameter as dependent variables, i.e. within-network, inter-network connectivity and the ratio of 
within- to inter-network connectivity of each of the 7 large-scale cortical brain networks (Fig. 2).

Figure 2.   Imaging analyses. (A) Representation of the 7 functional networks on the left lateral surface of the 
brain: visual network (VN), dorsal attention network (DAN), ventral attention network (VAN), sensori-motor 
network (SMN), fronto-parietal network (FPN), limbic network (LIMN) and default mode network (DMN). 
FORMER shift workers showed lower inter-network RSFC of the visual network than MATCHED controls, 
while a higher number of shift work years was associated with a higher ratio of within- to inter-network 
connectivity of the visual network in PRESENT shift workers (n = 13). (B) PRESENT shift workers showed lower 
gray matter volume of the left thalamus compared to FORMER and all NEVER shift workers in multivariate 
analysis of variance, corrected for age, sex, education and total gray matter volume. 95% confidence intervals 
are indicated by lines surrounding the regression lines and are given in detail in Table 3 for the regression 
coefficients. Parameters are represented in residuals from partial correlations. None of these association were 
significant after multiple comparison correction.
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Here, no main effect of shift work on RSFC was found [F (42, 1010) = 1.10, p = 0.309, Wilks Λ = 0.914; partial 
η2 = 0.044].

Matched samples comparisons.  There were marginally significant differences in RSFC parameters 
(Table 2) for within-network RSFC of the fronto-parietal network (FPN, p = 0.034) and the ratio of within- to 
inter-network RSFC of the visual network (p = 0.044; Fig. 2) between PRESENT shift workers and MATCHED 
controls.

Table 2.   Results on network-wise Resting State Functional Connectivity (RSFC). Sign. = Percentage of tests 
that showed a significance of p < 0.05 when comparing PRESENT or FORMER shift workers with 1000 samples 
of RANDOM controls. * indicates an asymptotic significance. CI = 95% confidence interval.

Compared to

RANDOM MATCHED Linear regression of shift work years

Sign (%) Mean rank MATCHED/PRESENT Effect size r ß CI lower; CI upper p η2

PRESENT shift workers

VN within 7.1 10.62/16.38; p = .057 .38 .31 − .32; .94 .290 .14

SMN within 9.5 13.62/13.38; p = .960 − .02 .19 − .58; .96 .586 .04

DAN within 5.9 12.23/14.77; p = .418 .17 − .44 − 1.18; .31 .213 .19

VAN within 6.5 14.85/12.15; p = .390 − .18 .17 − .62; .97 .628 .03

LIMN within 8.5 14.15/12.85; p = .687 − .09 − .19 − .88; .51 .558 .05

FPN within 8.6  16.65/10.35; p = .034 − .41 .06 − .70; .81 .871 .00

DMN within 5.0 15.08/11.92; p = .311 − .21 − .22 − 1.10; .67 .587 .04

VN inter 6.9 13.69/13.31; p = .920 − .03 − .53 − 1.28; .21 .138 .25

SMN inter 7.3 13.54/13.46; p = 1.000* − .01 − .36 − 1.09; .36 .281 .14

DAN inter 5.0 14.00/13.00; p = .762 − .07 − .40 − 1.28; .48 .329 .12

VAN inter 7.1 15.69/11.31; p = .153 − .29 − .54 − 1.31; .24 .149 .24

LIMN inter 7.4 13.15/13.85; p = .840 .05 − .50 − 1.15; .16 .119 .28

FPN inter 8.4 15.38/11.62; p = .223 − .25 − .32 − 1.06; .43 .361 .11

DMN inter 4.8 13.62/13.38; p = .960 − .02 − .37 − 1.22; .49 .350 .11

VN Ratio 6.2  10.46/16.54; p =.044 .40 .63 .26; 1.01 .005 .65

SMN Ratio 5.8 13.77/13.23; p = .880 − .04 .30 − .47; 1.08 .390 .09

DAN Ratio 5.9 11.15/15.85; p = .125 .31 − .09 − .86; .69 .799 .01

VAN Ratio 5.6 13.77/13.23; p = .880 − .04 .40 − .46; 1.26 .312 .13

LIMN Ratio 6.7 14.08/12.92; p = .724 − .08 .22 − .49; .93 .496 .06

FPN Ratio 6.2 15.23/11.77; p = .264 − .23 .21 − .45; .87 .486 .06

DMN Ratio 6.5 14.15/12.85; p = .687 − .09 .14 − .82; 1.10 .748 .01

FORMER shift workers

VN within 3.3 93.14/83.97; p = .232 − 0.09 .002 − .001; .005 .163 .023

SMN within 3.4 94.80/82.34; p = .105 − 0.12 .001 − .001; .004 .246 .016

DAN within 2.8 93.25/83.85; p = .221 − 0.09 .000 − .001; .002 .544 .004

VAN within 4.1 87.83/89.16; p = .863 0.01 − .001 − .002; .002 .978 .001

LIMN within 7.4 87.66/89.33; p = .828 0.02 .000 − .002; .001 .462 .006

FPN within 3.6 94.26/82.87; p = .138 − 0.11 .001 − .001; .002 .519 .005

DMN within 6.8 92.57/84.52; p = .294 − 0.08 .000 .000; .002 .226 .017

VN inter 5.0 97.68/79.53; p = .018 − 0.18 .000 − .001; .001 .938 .001

SMN inter 6.0 95.20/81.96; p = .085 − 0.13 .000 − .001; .001 .799 .001

DAN inter 3.0 95.22/81.93; p = .084 − 0.13 .000 .000; .001 .596 .003

VAN inter 5.7 92.54/84.55; p = .298 − 0.08 .000 − .001; .000 .311 .012

LIMN inter 4.0 95.92/81.25; p = .056 − 0.14 .000 − .001; .000 .834 .001

FPN inter 6.3 93.03/84.07; p = .243 − 0.09 .000 − .001; .000 .514 .005

DMN inter 5.2 94.99/82.16; p = .095 − 0.13 .002 − .001; .000 .683 .002

VN Ratio 5.3 86.85/90.11; p = .671 0.03 .002 − .001; .005 .281 .014

SMN Ratio 3.4 89.90/87.13; p = .719 − 0.03 .002 − .000; .005 .055 .043

DAN Ratio 4.1 89.01/88.00; p = .895 -0.01 .001 − .002; .003 .575 .004

VAN Ratio 4.1 84.53/92.38; p = .307 0.08 .001 − .001; .003 .307 .012

LIMN Ratio 5.1 86.30/90.65; p = .571 0.04 − .001 − .004; .002 .560 .004

FPN Ratio 2.9 91.26/85.80; p = .477 − 0.05 .002 − .001; .004 .195 .002

DMN Ratio 6.4 88.49/88.51; p = .999 0.00 .002 − .001; .004 .197 .020
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Comparing mean RSFC of PRESENT shift workers to RANDOM controls, none of the tests indicated sig-
nificant differences in mean RSFC between PRESENT shift workers and RANDOM controls [Table 2] under the 
assumption that α = 0.0024 (Bonferroni correction for multiple comparisons in RSFC parameters) corresponds 
to 99.76% of the tests showing a significant difference.

FORMER shift workers showed lower inter-network RSFC of the visual network (VN, p = 0.018) as compared 
to MATCHED controls [Table 2], but this difference was not significant when applying a Bonferroni-correction 
for multiple comparisons (pcorrected for RSFC = 0.0024).

The comparison between FORMER shift workers and RANDOM controls indicated that significant differ-
ences between the groups ranged from a minimum of 2.8% for within-network-RSFC of the dorsal-attention 
network (DAN) to a maximum of 7.4% for within-network-RSFC of the limbic network (LIMN). Thus, none of 
the examined parameters met the criterion of 99.76% of the tests showing a significant difference.

Association with the number of shift work years, corrected for age, sex and education.  Within 
PRESENT shift workers, more years of shift work were linearly associated with a higher ratio of within- to inter-
network RSFC of the visual network (ß = 0.63, partial η2 = 0.65; p = 0.005) [Fig. 2]. Within FORMER shift work-
ers, there was no association between number of shift work years and RSFC parameters.

None of the results regarding RSFC parameters were significant after applying a Bonferroni-correction for 
multiple comparisons (p = 0.05 divided by 21 parameters = pcorrected for RSFC = 0.002; Fig. 4).

Cortical thickness.  There were no differences in cortical thickness between PRESENT or FORMER shift 
workers and the group of all NEVER shift workers. The same was found when compared to MATCHED controls.

Linear associations with numbers of shift work years, corrected for age, sex and educa‑
tion.  There were no significant associations between numbers of shift work years and vertex-wise cortical 
thickness, neither in PRESENT nor in FORMER shift workers.

Gray matter volume of subcortical structures.  Analysis of variance.  To examine a significant main 
effect of shift work on subcortical gray matter volumes we used a multivariate analysis of variance (ANOVA) 
using sex and shift work group with three levels (NEVER, PRESENT, FORMER) as factors, age and education 
as covariates and all subcortical volumes as dependent variables. Here, no significant main effect of shift work 
on gray matter volume of any subcortical structure was found [F (28, 1024) = 0.66, p = 0.913, Wilks Λ = 0.965; 
partial η2 = 0.018]. However, pairwise comparisons indicated that PRESENT shift workers had lower gray matter 
volumes in the left thalamus as compared to NEVER (p = 0.021) and FORMER shift workers (p = 0.050; Fig. 2), 
though this result was not significant when adding total gray matter volume as covariate (PRESENT < NEVER, 
p = 0.250; PRESENT < FORMER, p = 0.219). None of these results would be significant after post-hoc Bonfer-
roni correction (p = 0.05 divided by 7 subcortical structures for each hemisphere = pcorrected for subcortical vol-
umes = 0.05/14 = 0.0036) though.

MATCHED samples comparisons.  When compared to MATCHED controls, the difference in gray mat-
ter volume of the left thalamus of PRESENT shift workers showed trend level significance (p = 0.050). For all 
other structures Mann–Whitney-U tests did not indicate a significant difference. When FORMER shift workers 
were compared to MATCHED controls no significant difference was found.

Association with numbers of shift work years, corrected for age, sex and education.  A higher 
number of shift work years was associated with lower gray matter volume of the left thalamus for PRESENT shift 
workers (ß = − 0.613, p = 0.019, partial η2 = 0.516), which was also true after adding total gray matter volume as 
covariate (ß = −0.645, p = 0.016, partial η2 = 0.584, Table 3). The same was seen at trend level in FORMER shift 
workers (ß = − 0.193, p = 0.055, partial η2 = 0.043). When total gray matter volume was added as a covariate, the 
association between more shift work years and a lower gray matter volume of the left thalamus was significant 
(ß = − 0.188, p = 0.039, partial η2 = 0.051, Table 3).

Cognitive performance.  Analyses of variance.  To examine a significant main effect of shift work on cog-
nitive performance we used univariate analyses of variance (ANOVA) using sex and shift work group with three 
levels (NEVER, PRESENT, FORMER) as factors, age and education as covariates and the respective cognitive 
variable as dependent variable. Here, no main effect of shift work group was found [F(30, 976) = 1.03; p = 0.425, 
partial η2 = 0.031]. Pairwise comparisons indicated that FORMER shift workers performed significantly lower 
than NEVER shift workers (p = 0.017) regarding short-term memory [ZNS (Forward)]. For naming colors in the 
Stroop test (p = 0.045), pairwise comparisons indicated that FORMER shift workers were significantly slower 
than NEVER shift workers (p = 0.025).

Matched samples comparisons.  When compared to MATCHED controls, PRESENT shift workers showed mar-
ginally faster processing speed in TMT-A (p = 0.044, effect size = − 0.39) and lower susceptibility to interference 
(Stroop, p = 0.039; r = − 0.41). As compared to RANDOM controls, cognitive performances of PRESENT shift 
workers showed no differences, as significant tests between the groups ranged from a minimum of 2.2% for 
short-term memory [ZNS (Forward)] to a maximum of 4.6% for processing speed (TMT-A [Table 4]).

FORMER shift workers showed slower processing speed [Stroop (Reading; p = 0.040, effect size = 0.16; Stroop 
(naming; p = 0.039, effect size = 0.13)] in comparison to MATCHED controls. As compared to RANDOM 
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controls, significant differences to FORMER shift workers ranged between a minimum of 3.3% for susceptibil-
ity to interference [Stroop(Interference)] to a maximum of 5.7% for concept shifting [TMT-BA (Switching)], 
thus indicating no difference between groups in cognitive performance.

Association with numbers of shift work years, corrected for age, sex and education.  In PRE-
SENT shift workers, we observed no association between the number of shift work years and cognitive perfor-
mances (Table 3) (all p > 0.137, all partial η2 = 0.001–0.474).

In FORMER shift workers, more years of shift work were associated with longer processing times in selective 
attention [ß = 0.214, p = 0.036, partial η2 = 0.045, AKT (Time)] and lower performance in reasoning [ß = −0.211, 
p = 0.015; partial η2 = 0.063, Fig. 3]. In the Stroop test, more years of shift work were associated with lower 
processing speed in naming (ß = 0.234, p = 0.031, partial η2 = 0.065) and during the selectivity task (ß = 0.202 
p = 0.048, partial η2 = 0.052).

From the effect sizes, all associations can be seen as weak associations89, while the confidence intervals around 
the regression coefficients indicate a high uncertainty since one of the intervals were close to zero (Table 4). When 
applying a Bonferroni-correction for multiple comparisons (p = 0.05 divided by 12 independent tests = pcorrected 
for cognitive performance = 0.004) none of these associations would be significant [Fig. 4].

Mediation analyses.  Partial correlations corrected for age, sex and education between all RSFC parameters 
and cognitive performances can be found in supplementary tables 1 to 3 for the whole sample, supplementary 
tables 4 to 6 for PRESENT shift workers and supplementary tables 7 to 9 for FORMER shift workers.

Group differences.  For the first series of mediation analyses, we entered shift work group (PRESENT, FOR-
MER, NEVER) as explanatory factor (X) and cognitive performances [digit span, i.e. ZNS (Forward); Stroop 

Table 3.   Results of subcortical structures. Sign. = Percentage of tests that showed a significance of p < 0.05 
when comparing PRESENT or FORMER shift workers with 1000 samples of RANDOM controls. * indicates 
an asymptotic significance. CI = 95% confidence interval. L = Left, R = Right.

Compared to

RANDOM MATCHED Linear regression of shift work years

Sign (%) Mean rank PRESENT/MATCHED Effect size r ß CI lower; upper p η2

PRESENT shift workers

L Thalamus 3.50 16.46/10.54; p = .05 − 0.39 − .645 - 50.18; − 7.04 .016 .584

L Caudate 3.60 13.62/13.38; p = .96 − 0.02 − .403 − 37.21; 13.99 .319 .141

L Putamen 4.60 13.54/13.46; p = 1.0 − 0.01 .434 − 51.28; 14.72 .232 .197

L Pallidum 4.10 12.69/14.31; p = .614 0.11 − 337 − 18.26; 7.28 .344 .128

L Hippocampus 3.90 14.00/13.00; p = .762 − 0.07 .142 − 18.79; 29.78 .609 .039

L Amygdala 3.50 12.54/14.46; p = .545 0.13 − .56 − 14.45; 11.95 .829 .007

L Accumbens 3.40 14.77/12.23; p = .418 − 0.17 .210 − 5.19; 2.66 .470 .077

R Thalamus 40.00 15.00/12.00; p = .336 − 0.20 − .262 39.51; 11.73 .241 .190

R Caudate 3.70 13.85/13.15; p = .840 − 0.05 − .394 − 31.25; 12.10 .331 .135

R Putamen 4.40 13.77/13.23; p = .880 − 0.04 − .285 − 53.32; 26.14 .445 .085

R Pallidum 16.00 11.62/15.38; p = .223 0.25 .551 − 20.63; 1.96 .092 .353

R Hippocampus 21.00 13.08/13.92; p = .801 0.06 − .061 − 15.07; 11.24 .741 .017

R Amygdala 15.00 13.00/14.00; p = .762 0.07 − .048 − 10.06; 8.32 .829 .007

R Accumbens 8.00 14.54/12.46; p = .511 − 0.14 − .287 − 8.58; 4.05 .424 .093

FORMER shift workers

L Thalamus .30 91.39/85.67; p = .457 − 0.06 − .188 − 24.92; − .67 .039 .051

L Caudate 1.80 90.77/86.28; p = .559 − 0.04 − .022 − 9.53; 7.72 .835 .001

L Putamen .80 89.35/87.67; p = .827 − 0.02 − .129 − 3.71; 17.20 .203 .020

L Pallidum 1.00 91.34/85.72; p = .464 − 0.06 .026 − 4.24; 5.57 .788 .009

L Hippocampus 0.80 90.85/86.20; p = .545 − 0.05 − .159 − 13.20; − 0.02 .050 .046

L Amygdala 1.00 93.14/83.96; p = .232 − 0.09 − .156 − 5.92; .310 .077 .038

L Accumbens .60 93.55/83.57; p = .194 − 0.10 − .098 − 2.01; 1.44 .743 .029

R Thalamus 1.20 91.97/85.11; p = .372 − 0.07 − .076 − 18.87; 7.39 .387 .009

R Caudate 1.20 92.35/84.74; p = .322 − 0.07 − .051 10.34; 6.02 .600 .003

R Putamen 1.20 90.82/86.24; p = .551 − 0.04 .060 − 7.06; 13.13 .552 .004

R Pallidum 11.00 92.39/84.70; p = .317 − 0.08 .048 − 3.65; 6.02 .627 .003

R Hippocampus 11.00 90.93/86.12; p = .531 − 0.05 − .110 − 12.38; 2.79 .212 .019

R Amygdala 3.00 91.67/85.40; p = .414 − 0.06 − .143 − 5.83; .58 .107 .031

R Accumbens 1.00 92.01/85.07; p = .366 − 0.07 − .007 − 1.66; 1.54 .938 .000
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(Reading; Naming); TMT-A; TMT-BA] as outcomes (Y). No mediation effect of gray matter of the left thalamus 
(M) was revealed.

Shift work years.  As a result of the second mediation analysis, no indirect effect of the number of shift work 
years via gray matter volume of the left thalamus as mediator (M) on processing speed [Stroop (reading), Stroop 
(naming)], selective attention or executive performance [Stroop (selectivity), Stroop (interference)] was found.

Chronotype.  Since the chronotype has been discussed to modulate RSFC10 as well as the ability to cope with 
the circadian challenges of shift work11, we investigated whether the three examined groups differed in terms 
of chronotype. Chronotype was measured as mid sleep on free days (MSF), defined as the midst between an 
individual´s preferred time to go to bed and to wake up, if there are no environmental restrictions76.

MSF of PRESENT shift workers was 03:39 [h:min] and was not significantly different from MATCHED 
controls with 03:37 [h:min] [Z = − 0.423, p(asymptotic) = 0.689, effect size r = 0.08).The desired wake-up time on 
free days of PRESENT shift workers was 28 min later (at 08:08 [h:min]) as compared to MATCHED controls, 
but not significant (Z = 0.85, p = 0.418, effect size r = 0.17. There was no significant difference in sleep duration 
on free days either (PRESENT = 9:04 h, MATCHED controls = 9.17 h, Z = − 0.14, p = 0.894, effect size r = − 0.03).

Table 4.   Results of cognitive performances. Sign. = Percentage of tests that showed a significance of p < 0.05 
when comparing PRESENT or FORMER shift workers with 1000 samples of RANDOM controls. * indicates 
an asymptotic significance. CI = 95% confidence interval.

Compared to

RANDOM MATCHED Linear regression of shift work years

Sign (%) Mean rank MATCHED/PRESENT Effect size r ß CI lower; upper p η2

PRESENT shift workers

AKT (Time) 3.1 12.62/13.42,  p = .810 .05 − .315 − .585; .169 .233 .195

CBT (Forward) 2.3 14.42/12.58, p = .139 − .13 − .298 − .070; .023 .271 .149

CBT (Backward) 3.5 12.65/14.35, p = .579 .12 .611 − .005; .072 .280 .474

ZNS (Forward) 2.2 13.69/13.31, p = .920 − .03 .044 − .044; .049 .900 .002

ZNS(Backward) 3.1 12.77/14.23, p = .650 .12 − .141 − .066; .044 .648 .027

TMTA 4.6 16.50/ 10.50, p = .044 − .39 .046 − .436; .489 .899 .002

TMTB 2.9 17.60/13.40; p = .202 .24 .415 − .160; .991 .137 .228

TMTBA(Switch) 2.8 11.46/15.54, p = .186 .27 .286 − .990; 2.372 .371 .101

Stroop(Reading) 2.7 12.31/14.69, p = 0.448 .16 .086 − .572; .700 .822 .007

Stroop(Naming) 4.5 11.96/15.04, p = .311 .20 − .098 − .593; .769 .774 .001

Stroop(Selectivity) 3.2 14.15/12.85, p = .687 − .09 .424 − .362; 1.403 .211 .188

Stroop(Interference) 3.2 16.62/10.38, p = .039 − .41 .442 − .310;1.222 .207 .191

Reasoning 3.4 11.23/15.77, p = .139 .30 .032 − .340; .371 .921 .001

Visual Pattern 2.6 13.65/13.35, p = .92 − .03 .020 − .090; .095 .950 .001

Benton 3.1 12.50/14.5, p = 0511 .13 .120 − .410; .594 .684 .022

Creative Think 2.3 13.23/13.77, p = .880 .04 .230 − .235; .292 .538 .055

Vocabulary 3.5 11.42/14.71, p = .270 . 22 − .041 − .276; .244 .888 .049

FORMER shift workers

AKT (Time) 4.1 83.45/93.44, p = .193 .10 .214 .019; .556 .036 .045

CBT (Forward) 4.0 90.95/86.11, p = .497 − .04 − .002 − .018; .018 .987 .001

CBT (Backward) 3.4 90.06/86.97, p = .674 − .02 − .065 − .031; .016 .537 .005

ZNS (Forward) 4.8 93.99/83.13, p = .139 − .07 − .060 − .027; .015 .575 .004

ZNS (Backward) 5.5 86.43/90.53, p = .549 .05 .003 − .020; .021 .977 .001

TMTA 4.3 92.57/84.52, p = .295 − .07 .084 − .133; .332 .397 .009

TMTB 5.0 98.37/102.64; p = .602 − .04 .214 − .040; .469 .098 .029

TMTBA(Switch) 5.7 88.34/88.66, p = .967 − .01 .141 − .293; 1.629 .170 .022

Stroop(Reading) 4.3 80.53/96.29; p = .040 .16 .180 − .018; .272 .084 .035

Stroop(Naming) 5.6 80.49/96.33, p = .039 .13 .234 .023; .450 .031 .065

Stroop(Selectivity) 3.4 86.11/90.84, p = .538 .03 .202 .007; 1.316 .048 .052

Stroop(Interference) 3.3 90.19/86.85, p = .664 .00 .180 − .069; 1.137 .082 .040

Reasoning 4.3 87.14/88.85, p = .823 .00 − .221 − .198; − .022 .015 .063

Visual Pattern 4.2 92.45/84.63, p = .301 − .05 − .076 − .046; .021 .526 .007

Benton 4.1 89.41/84.56, p = .524 − .05 .047 − .120; .203 .612 .003

Creative Think 4.0 90.30/85.72, p = .549 .01 − .127 − .276; .072 .247 .018

Vocabulary 3.4 80.53/96.29; p = .446 − .03 − .177 − .190; − .010 .076 .039
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MSF of FORMER shift workers was 03:36 [h:min] and not significantly different from the MSF of MATCHED 
controls (3:26, h:min; Z = − 0.24; p = 0.813; effect size r = 0.06). Sleep duration on free days (FORMER = 8.52 h, 
MATCHED controls = 8:50 h; Z = − 0.40, p = 0.689; effect size r = 0.05), as well as wake-up time on free days 
(FORMER = 07:48 h:min, MATCHED controls = 07:41 h:min; Z = − 0.318, p = 751; effect size r = 0.05) was also 
not significantly different.

Discussion
The present study tested the hypothesis whether night shift work, a challenge to the human circadian system, 
is associated to alterations in functional connectivity and morphological characteristics of the brain using the 
objective imaging methodology of MRI. These investigations were supplemented by extensive neuropsycho-
logical examinations. Moreover, the chronotype was determined for all participants. Our study revealed the 
following major findings: 1. The chronotype did not differ between shift workers and controls. 2. After multiple 
comparison correction no associations between night shift work, three graph-theoretical measures of RSFC 
of 7 functional brain networks, brain morphology or cognitive performances were found. 3. Before multiple 
comparison correction, our results hint at an association between: (i) more years of night shift work and higher 
segregation of the visual network in PRESENT shift workers; (ii) night shift work experience and lower gray 
matter volume of the left thalamus, but not cortical thickness; (iii) night shift work and lower performances in 
selected cognitive domains.

Figure 3.   Cognitive performances. Scatter plots of partial correlations between the number of shift work years 
and cognitive performances in FORMER shift workers are shown. All parameters are residuals from partial 
correlations, corrected for age, sex and education. 95% confidence intervals are indicated by lines surrounding 
the regression lines and are given in detail in Table 3 for the regression coefficients. None of these assocations 
were significant after multiple comparison correction.
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Chronotype.  The chronotype has to be considered as a potential modulator between shift work and cogni-
tive performance. Early and late chronotypes are thought to differ in the strength of the circadian misalignment 
they experience during shift work11. Early chronotypes may cope better with early shifts and late chronotypes 
better with night shifts. E.g. in a cohort of younger participants (mean age 41.8 years), the chronotype of shift 
workers was later than in non-shift workers90. Lower performance in tasks of cognitive flexibility in shift work-
ers was also shown to depend on the circadian phase as measured in saliva-melatonin6. Furthermore, a recent 
study on the relationship between chronotypes and RSFC reported fundamental differences in the default mode 
network (DMN) between early and late chronotypes10. These differences were considered to account for the 
compromised attentional performance and increased sleepiness observed in late chronotypes when extrinsic 
social rhythms do not match their intrinsic circadian phenotype10. Thus, misalignment in FC of shift workers 
may depend on their chronotype. However, this possibility can be ruled out in our sample, since there was no 
difference in chronotype between PRESENT or FORMER shift workers and matched controls.

RSFC.  To the best of our knowledge this is the first study dealing with the impact of night shift work on 
RSFC of the brain. The analyses of RSFC revealed no differences in 7 major networks24,57 considered vulnerable 
from prior cognitive studies between shift workers (PRESENT and FORMER) and controls after applying a 
Bonferroni correction for multiple comparisons. However, an association between more years of shift work and 
a higher segregation of the visual network was observed in PRESENT shift workers, which may be considered 
strong based on the effect size (partial η2 = 0.65) only. It is important, however, to address that the 95% confi-
dence interval around the regression coefficient ß = 0.63 ranged from 0.26 to 1.01 showing uncertainty within 
this effect estimation, potentially due to the lack of power (n = 13). Further, effect sizes tend to be stronger par-
ticularly in small as compared to larger samples86,91. The high effect size might therefore lead to overinterpreta-
tion when generalized to the population and needs further confirmation in larger samples.

This particular effect, however, could hint at a more segregated visual network, the longer the (PRESENT) shift 
workers had worked in shift and therefore at a reorganization of the connectedness of the visual network with 
more shift work experience. Less segregation, i.e. higher integration of networks has generally been discussed as 
a compensational mechanism, with higher coupling being a means of supporting networks affected by structural 
decline (e.g. during aging) to maintain cognitive functioning19,25. In light of this hypothesis, we may speculate 
that there is less compensational effort with more years of shift work experience. High segregation of large-scale 

Figure 4.   Summary of results from PRESENT and FORMER shift workers. None of the effects were significant 
after application of Bonferroni correction for multiple comparisons (pRSFC, pCOGNTION, pVOLUMES). 
Y-axis shows log-transformed p-values. (A) For PRESENT shift workers p values of comparisons to MATCHED 
controls are represented by orange bars. p values of partial correlations with the number of shift work years 
are represented in dark red. (B) For FORMER shift workers p values of comparisons to MATCHED controls 
are represented by light blue bars. p values of partial correlations with the number of shift work years are 
represented in dark blue bars. L = left, R = right.
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networks has also been related to better cognitive performance in healthy, young adults25 and supposedly reflects 
high specialization. At rest it may indicate an optimal state from which dynamic changes in connectivity can be 
initiated to solve a task26. This would fit with our observation that the visual network is more segregated with 
higher experience in shift work. Thus, this may be an adaptation towards the altered exogenous environment 
and may therefore reflect a more optimal state during rest for shift workers. Whether and how the connectiv-
ity profile of the visual network in shift workers dynamically changes during an active state of task needs to be 
elucidated by further studies.

Since no association between the number of shift work years and cognition was found for the PRESENT 
shift workers, we could not establish a triangular association between the number of shift work years and RSFC 
on the one hand and RSFC and cognition on the other hand. This may have several reasons: The first reason is 
the small sample size through which we lack power to find an association between shift work and cognition in 
PRESENT shift workers and therefore also such a triangular association. This is the most likely reason, since the 
association between network-wise RSFC measures and cognition is well established25,27,59, has previously already 
been shown for the here investigated cohort (please see24) and can be found if examined within the whole sample 
investigated here (Supplementary tables 1 to 3). A higher segregation of the visual network correlated also with 
better working memory performance [r = 0.81, p = 0.016; CBT (Backward), Supplementary table 6] in PRESENT 
shift workers, though this was independent of the number of shift work years. Another reason may relate to the 
complexity of the brain as a system: It is possible that neuronal differences related to shift work exist, but that 
these do not necessarily lead to differences in cognitive performance due to the huge compensatory potential 
of the brain16–19 as has often been discussed in aging research. Further, there may be no triangular association 
between shift work, RSFC and cognitive performance with respect to the here investigated parameters, i.e. visual 
network and the selected cognitive tasks. Instead, there may be other neuronal differences explaining cognitive 
decline. Here, other target regions may be considered, such as the thalamus (please see discussion on morpho-
metry below) or other smaller brain circuits involved in circadian rhythms, e.g. the suprachiasmatic nucleus of 
the hypothalamus92. Further, other connectivity features may be explored in future studies, such as anatomical 
or task-based functional connectivity.

Since lower inter-network RSFC of the visual network was also observed in FORMER shift workers as com-
pared to MATCHED controls the present results may hint at a particular role of the visual network in shift 
workers. In future studies with higher power, the visual-processing network may thus become an interesting 
target for focusing on the relationship between brain function and shift work.

Cortical thickness and subcortical structures.  We did not find any reliable association between 
shift work and cortical thickness at an alpha-level of 0.001, which was adjusted as suggested for surface-based 
analyses83. Thus, our results do not support an association between shift work and cortical thickness. Regard-
ing subcortical structures, we found associations between shift work and gray matter volume of the left thala-
mus. Even though none of these association survived Bonferroni correction and the main effect of shift work 
(ANOVA) was not significant, they show a quite consistent pattern within PRESENT shift workers: Pairwise 
comparisons indicated that PRESENT had lower gray matter volumes than FORMER and NEVER shift work-
ers (Fig. 2). Also, in PRESENT shift workers, a higher number of shift work years was associated with lower 
gray matter volume of the left thalamus. The functional role of the thalamus and its specific nuclei as modula-
tors of circadian rhythms has been implicated in a large body of research93,94. Fewer studies have reported on 
structural alterations within the thalamus in association to circadian rhythms. Bilateral thalamic volume loss 
has been observed in patients with sleep insomnia95 and after sleep deprivation in healthy men96. The authors 
discussed this as a possible explanatory mechanism for cognitive performance reductions after sleep loss, while 
no explanation was given how sleep loss should cause volume loss within the thalamus. In the present study, 
however, the association between shift work and cognitive performance could not be explained by an indirect 
effect of thalamic volume loss. Additionally, only the left thalamus was affected. From the confidence intervals 
of the estimation of gray matter volume in PRESENT shift workers, as well as the confidence intervals around 
the regression slope, together with the small sample size, this effect has to be interpreted carefully. However, 
the association between a higher number of shift work years and less gray matter volume in the cross-sectional 
analysis presented here, may hint at long-term effects of shift work on one of the neuronal modulators of circa-
dian rhythms. This has to be further examined in future studies with larger sample sizes.

In humans, there is not much research on the impact of chronodisruption despite sleep disorders and dep-
rivation on morphological brain characteristics and, to the best of our knowledge, no study on the impact of 
shift work on brain morphology. Cho39 investigated the impact of chronic jetlag on the volume of the right 
temporal lobe of flight attendants. In those with short, but not long recovery periods a correlation was found 
between saliva cortisol levels, lower volume of the right temporal lobe and longer reaction times in a visual-
spatial memory task39. In the present study no correlation was found between shift work and the temporal lobe, 
neither within the surface-based analysis of the whole cortex nor within the hippocampus (analysis of subcortical 
gray matter volumes). This may be due to the different kind of chronodisruption (jetlag versus shift work) or to 
methodological reasons, e.g. that we chose a whole-surface versus region-based approach and an older while 
Cho39 investigated a younger sample.

Cognitive performances.  The present results do not support a general association between shift work and 
cognitive ability, because only some tests indicated differences between shift working groups (Fig. 3). Of the large 
battery of cognitive tests used here, the Stroop test was the most sensitive test. Here, our results mostly hinted 
at lower performances in PRESENT and FORMER shift workers (ANOVA & MATCHED analysis). A higher 
number of shift work years was also correlated to longer processing times in FORMER shift workers (Fig. 3). 
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Therefore, our results might hint at an association between shift work and specific parameters of lower process-
ing speed and cognitive flexibility. Nevertheless, these correlations were not significant after multiple compari-
son correction.

Previous studies reported associations between shift work and cognitive performance in varying parameters 
but with variable and inconsistent results as outlined in the introduction. After night shift, lower performance in 
tasks of cognitive flexibility was described, but this depended on the circadian phase determined by melatonin 
levels in saliva6 and was associated to sleepiness. Unfortunately, no control group was included in this study and 
thus no information was provided whether the overall performance was lower in shift workers than in non-shift 
workers. In a large epidemiological study, present but not former shift workers, showed slower performance in all 
three subtasks of the TMT than never shift workers8, which fits with the results from our study. Here, PRESENT 
shift workers showed faster reaction times as compared to MATCHED controls in the processing speed measure 
of TMTA. No correlations with the number of shift work years were found. In another study, night shift workers 
made more errors, but reaction times in working memory, sustained attention and processing speed measured 
with the TMT were comparable to day shift workers2, thus whether an effect is found may also largely depend 
on the parameter investigated (reaction times versus correct answers given). Performance of emergency physi-
cians was comparable after overnight shifts and dayshift, but working memory seemed to be slightly impaired 
after night shift5. Simulated night shifts seem to impair vigilance and cognitive control3. Even within the atten-
tion system subprocesses (orienting versus alerting) rely differentially on time of day and chronotype36. These 
studies show that disruptions of the intrinsic circadian rhythm do not affect global cognitive performance, but 
rather specific cognitive processes, as is also suggested by our study. On the other hand Marquié, et al.4 found 
worse performance in current shift workers in a global cognitive score. Taken together these studies clearly point 
toward the complexity of the association between shift work and cognitive performance. This may be attributed 
to other influencing factors, such as the time, at which cognitive performance is measured, e.g. directly after the 
end of shift, or the recency of shift work, i.e. after retiring the effects seem to vanish4, but also the specific shift 
work phenotype. E.g. slightly impaired cognition in later life of former shift working nurses was found only, if 
they had a shift work history of more than 10 years4 or 20 years7. In the current study, decreases in cognitive 
performances were also found with a higher number of shift work years. Even though the present correlations 
were not significant after multiple comparison correction, it may be inferred that the number of shift years has 
to be considered as a factor influencing cognitive performance.

Another factor that may play a role, particularly when it comes to neuronal differences associated to circadian 
disruptions may be elevated stress39,97. This is emphasized in studies showing that no disruption in cognitive 
performance was found in shift workers who were able to adapt to their working schedule6,8. Thus, the individual 
ability to cope with exogenous influences on circadian rhythms and individually perceived psychological stress 
may be important influences to be investigated in future studies with potentially greater power.

One limitation of the present study is the rather limited number of PRESENT shift workers. Therefore, all 
effects reported and discussed here should be regarded with a respective uncertainty, but they provide valuable 
hints towards interesting targets for the future assessment of neuronal differences related to shift work. It is also 
important to keep in mind that the 1000BRAINS cohort, on which the present study was built, is a population-
based cohort. Future studies may collect objective imaging data in populations of shift workers as has been done 
with cognitive data7,98. One clear advantage of the present study is the rich multimodal imaging data available 
in the 1000BRAINS cohort.

Conclusion
In summary, no associations between night shift work, three graph-theoretical measures of RSFC of 7 functional 
brain networks and brain morphology were found after multiple comparison correction. Preceding multiple 
comparison correction, our results hinted at an association between more years of shift work and higher segrega-
tion of the visual network in PRESENT shift workers, as well as lower gray matter volume of the left thalamus. 
Extensive neuropsychological investigations supplementing objective imaging methodology did not reveal an 
association between night shift work and cognition after multiple comparison correction. Our pilot study suggests 
that night shift work does not elicit general alterations in brain networks and affects the brain only to a limited 
extent. These results now need to be corroborated in studies with larger numbers of participants.

Even though the sample of PRESENT shift workers was small and the absence of associations may also be 
attributed to limited power (n = 13) this study can be considered as a pioneer project to conduct deeper research 
into the neuronal basis of the association between shift work and (cognitive) health. It is expected that the future 
application of imaging-based objective methods in greater sample sizes will greatly contribute to evaluate the 
impact of perceived stress97 and the specific phenotype of shift work, e.g. recovery periods39 and organization 
plans.

Data availability
The datasets generated and/or analyzed during the current study will be made available from the correspond-
ing author to other scientists on request in anonymized format and according to data protection policy in the 
ethics agreement.
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