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 95 
 96 

Abstract 97 

 98 

Understanding the human brain is a ‘Grand Challenge’ for 21st century research. Computational 99 
approaches enable large and complex datasets to be addressed efficiently, supported by 100 
artificial neural networks, modeling and simulation. Dynamic generative multiscale models, 101 
which enable causation across scales and are guided by principles and theories of brain function, 102 
are instrumental to link brain structure and function. This integrated approach to neuroscientific 103 
discovery is framed within the BigBrain, which spatially anchors tissue models and data across 104 
different spatial scales and assures that multiscale models are supported by the data, making 105 
the bridge to both basic neuroscience and medicine. Research at the cross-over of neuroscience, 106 
computing and robotics has the potential to push neuro-inspired technologies, taking advantage 107 
of a growing body of insights into perception, plasticity and learning. To render data, tools and 108 
methods, theories, basic principles and concepts interoperable, the Human Brain Project has 109 
launched EBRAINS, a digital neuroscience research infrastructure, building a transdisciplinary 110 
community of researchers united by the quest to understand the brain, with fascinating insights 111 
and perspectives for societal benefits. 112 

 113 

Significance statement 114 

 115 

Theoretical and methodological integration leads to consolidation and deeper intuitive 116 
understanding, without which scientific progress remains unguided. In 2013 the European Union 117 
launched the Human Brain Project (HBP) with the mission to integrate spatial and temporal 118 
scales of brain sciences within a common framework, ultimately leading to the digital research 119 
infrastructure EBRAINS. It has become evident that doing science in EBRAINS will require a 120 
culture change, unknown to the neuroscientific community albeit common in other large-scale 121 
projects such as elementary particle physics. The novel HBP-style neuroscience is characterized 122 
by transparent domain boundaries and deep integration of highly heterogeneous data, models, 123 
and information technologies. In this article HBP scientists exemplify their science case and 124 
illustrate the capacity of the EBRAINS ecosystem. 125 
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 126 

Introduction 127 

 128 

Advances in science have been driven by the human search for knowledge and understanding 129 
of nature, from the world around us to principles governing the whole universe. But there is 130 
a universe inside each one of us that manifests and defines our consciousness, cognition, 131 
behavior, emotions, health and illness, a universe that remains relatively unexplored yet 132 
contains the secrets of our human nature. It gives rise to behavior that we are all familiar 133 
with, allowing us to communicate, but also to manipulate information, be creative and 134 
spontaneous, make informed decisions, reason about moral and ethical questions and much 135 
more. Human curiosity has driven researchers forward to search for knowledge and 136 
understanding of this universe, which is per se a legitimate human endeavor. This search, 137 
however, is most challenging due to the complexity of the brain. Similar to research into 138 
other complex systems, brain research benefits from computational analysis tools as well as 139 
from new forms of collaboration, including large national and international consortia. 140 
Compared to other research disciplines such as nuclear physics or astronomy, such large-141 
scale collaboration is not so common in the fields of neuroscience and medicine. It is, 142 
however, not by chance that large national and international projects devoted to brain 143 
investigation have surfaced around the world in the last decade (Adams et al., 2020; 144 
Quaglio et al., 2021). 145 

The present paper will: 146 

• Provide a brief overview of the present status of key aspects of brain research and 147 
related challenges towards a deeper understanding of brain complexity 148 

• Motivate research focused on the multi-level organization of the brain, both in 149 
space and time, and to better understand the rules by which observations at a lower scale 150 
influence those at the higher one, and vice versa 151 

• Highlight the role of theory, brain modelling and simulation to explore the multi- 152 
scale organization of the brain 153 

• Argue for the need to develop new tools for data analytics, brain-inspired 154 
learning, neurorobotics and atlasing of the brain under a common roof, i.e., a joint 155 
research infrastructure 156 

• Elucidate how the European Human Brain Project (HBP) is contributing to brain 157 
research and why it is developing EBRAINS as a new research infrastructure, in a co-design 158 
approach between neuroscientists and developers, engineers and informaticists 159 

• Indicate the perspectives for brain medicine arising therefrom 160 

• Illustrate the potential for the development of brain-inspired computing, 161 
technology and high-performance computing    162 

• Emphasize collaborative approaches 163 

• Provide conclusions for future research 164 

 165 

Brain complexity 166 

The human brain is organized across different spatial scales – from molecules in the 167 
Angström and nanometer range, to cells on micrometer scales, local neuronal circuits, to 168 
whole brain networks at the centimeter scale, and functional systems underlying, for 169 
example, cognition and consciousness. As each level is unique in its organization of 170 
constituents and their activities, first principles nevertheless exist and account of 171 
functional or computational architectures that hold at multiple scales. Examples of this are 172 
the free energy principle and ‘synergetics’ that explain self-organization and pattern 173 
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formation at multiple scales (Friston et al., 2015; Friston et al., 2017; Haken, 1983; Huys et 174 
al., 2014; Kiebel and Friston, 2011). The principles provide guidance realizing the 175 
computational processes and optimizing neuroanatomical and neurochemical structures, 176 
and the data provide the building blocks for the microcircuitry and networks across spatial 177 
and temporal dimensions. For instance, molecules may change their conformation within a 178 
few milliseconds, while other processes occur during the whole lifespan, over many 179 
decades.  180 

Thus, functional architectures in the brain can be conceptualized at different scales of 181 
spatiotemporal organization, wherein molecular and cellular processes are subsumed under 182 
macroscopic functional entities like multi-area brain systems influencing behavior. Nerve 183 
cells are key components within this multi-level organization, and are themselves intricate 184 
autonomous structures – with a nucleus hosting genetic information, organelles involved in 185 
the production of proteins and metabolism, bilipid membranes in which receptors and other 186 
molecules are embedded, and trees of axons and dendrites with spines. The activities of 187 
most of these constituents, if not all, are organized in networks establishing a set of causal 188 
interactions, the Interactome (Klein et al., 2021). Distinct anatomical networks display a 189 
hierarchical architecture with multiple nodes of convergence of afferents and divergence 190 
of efferents, providing the substrate for both serial and parallel processing. Furthermore, 191 
neuronal circuit activity with excitatory and inhibitory mechanisms of signal transduction is 192 
highly influenced by neuromodulators (e.g., serotonin, acetylcholine and dopamine). These 193 
neuromodulators are secreted by groups of neurons located in the basal forebrain and 194 
brainstem, and reach large regions of the brain, where they may act either via release 195 
from non-synapsing varicosities and extracellular diffusion or via synaptic junctions on 196 
specific neuronal populations.  197 

The functional significance of the various types of overall human brain connectivity has 198 
been explored thanks to the development of neuroimaging and neurophysiological 199 
techniques as well as mathematical models. In particular, investigating the complete 200 
network of anatomically interconnected brain regions, the Connectome (Sporns et al., 201 
2005), and its relationship with functional brain networks (using, for example, structural 202 
and functional MRI, magnetoencephalography and electroencephalography), has provided 203 
important advances in our knowledge of the general principles of structural and functional 204 
network organization of the human brain. In this regard, three types of connections are 205 
commonly recognized: (i) structural or anatomical connectivity, (ii) functional 206 
connectivity, defined as statistical associations or dependencies between 207 
neurophysiological events recorded in distant brain regions; and (iii) effective connectivity, 208 
defined as directed or causal relationships between brain regions (Bullmore and Sporns, 209 
2009; Friston, 2011). Connectivity also evolves over time on multiple time scales (Galadí et 210 
al., 2021; Hansen et al., 2015) and establishes a functional connectivity dynamics 211 
predictive of aging  (Battaglia et al., 2020; Escrichs et al., 2021), cognitive processes 212 
(Lombardo et al., 2020), and brain disease (Courtiol et al., 2020). 213 

Neurons can be seen as central elements of a whole cascade of signal transduction, 214 
encompassing processes from the properties of ion channels up to the emergence of large- 215 
scale activity states (Goldman et al., 2019). For example, the apical dendrites of pyramidal 216 
neurons integrate information from a large dendritic network, and may serve as gates or 217 
switches, enabling or breaking global brain dynamics and regulating information flow, 218 
therefore potentially having a central role in the mechanism of consciousness (Aru et al., 219 
2020). According to this view, during conscious processing, the bottom-up information 220 
stream would be integrated at the apical dendrite with a top-down stream, putting into 221 
focus the role of large networks and cognitive processes.  222 

On the largest scales, information processing capacity is characterized by the network’s 223 
topochronic organization (Jirsa, 2008; Petkoski and Jirsa, 2021; Petkoski and Jirsa, 2019) as 224 
defined by the connectome’s strength and signal transmission delays, constraining the 225 
emergence of brain functions, for instance, in the emergence of consciousness. The global 226 
neuronal workspace theory of consciousness is a concrete manifestation thereof and 227 
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emphasizes the role of frontoparietal networks (Dehaene and Changeux, 2011). This theory is 228 
compared to other information-theory based (Tononi and Koch, 2015) and representational 229 
(Pennartz, 2015; Pennartz et al., 2019b), frameworks emphasizing the role of more 230 
posterior networks in, for instance, conscious vision, touch and hearing. Large-scale 231 
corticothalamic networks and the complexity of their dynamics play a major role in the 232 
levels of consciousness and their quantification, critical both for basic brain mechanistic 233 
understanding (Barbero-Castillo et al., 2021; Llinás et al., 1998; Sanchez-Vives et al., 2017) 234 
and for clinical application, as in disorders of consciousness (Comanducci et al., 2020; 235 
Demertzi et al., 2019; Storm et al., 2017). The topic of bottom-up vs. top-down 236 
perspectives in understanding multi-level brain organization has been intensively discussed 237 
in the past. It has been argued that a detailed bottom-up reconstruction and simulation of 238 
neuronal elements may reveal canonical microcircuits and reproduce results of in vivo 239 
experiments from which the laws of brain function will emerge (Markram et al., 2015). 240 
Along the same line of reasoning, it has been speculated that neuronal assemblies with 241 
their synaptic connections serve as innate, “Lego-like” building blocks of knowledge for 242 
perception and that the acquisition of memories involves the combination of these building 243 
blocks into complex constructs (Markram and Perin, 2011).  244 

It is still a major challenge to explore how the different spatial scales are connected, for 245 
example, how precisely the binding of a neurotransmitter to its receptor modulates the 246 
activity of cell assemblies and large-scale networks involving long-distance fiber tracts and 247 
brain areas, from which, in the end, behavior emerges. Other questions are what the rules 248 
are that govern the underlying networks, and how it is possible that they are so effective 249 
and so efficient when they use so little energy. Likewise, much work remains to be done to 250 
elucidate how the brain interacts with the natural and cultural environment, e.g., how 251 
epigenetic mechanisms act on the brain, how genotype-phenotype relationships are linked 252 
with variations between brains and behavior, why aging or brain diseases affect some 253 
people more than others, and what determines the individual vulnerability to brain 254 
diseases.  255 

Here, the top-down approach complements the strategy by using computational models as 256 
observation models that are fit to biological data (Friston, 2011; Huys et al., 2014; Pillai 257 
and Jirsa, 2017). These observational models effectively generate the data one would 258 
observe if the implicit generative model were correct. The explicit generative models 259 
establish a causal hypothesis, which uses the data to optimize the structure and 260 
parameters of some hypothetical network model, and evaluate the evidence for different 261 
models given the data. This dual approach guides the identification of causal mechanisms, 262 
going beyond the estimation of statistical correlations in traditional data mining 263 
approaches. Examples include the Perturbation Complexity Index (PCI) used to assess 264 
effective connectivity (Comolatti et al., 2019), variants of dynamic causal modelling used 265 
in The Virtual Brain (TVB; see below for examples of clinical applications) and uses of 266 
generative models in a 'digital twin' approach (Hashemi et al., 2020; Vattikonda et al., 267 
2021), which optimizes parameters to best explain personalized data as a prelude to 268 
characterizing within and between subject variability. 269 

Many researchers converge on the notion that the two perspectives are not mutually 270 
exclusive and, even more, that bottom up-approaches need to be supplemented by 271 
conceptual approaches reducing structural complexity (Frégnac and Bathellier, 2015) and 272 
principled approaches making use of theories of brain function (Friston, 2011; Huys et al., 273 
2014; Pillai and Jirsa, 2017). It has been argued to go beyond a simplistic top-down and 274 
bottom-up dichotomy, and to link the cognitive and brain perspectives (Ramsey and Ward, 275 
2020). The unparalleled complexity of the brain may seem like a daunting challenge for any 276 
research project in the field, but it is a critical factor for the brain to organize itself and for 277 
the emergence of brain function and behavior. Cognition and behavior cannot be explained 278 
and predicted by the brain’s individual components alone. Instead, both so-called bottom-279 
up and top-down approaches are necessary to understand brain organization, its role in 280 
signal transduction, cognitive processing and behavior. Information processing at axonal 281 
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level is highly parallel, and at the same time characterized by both convergence and 282 
divergence (Rockland, 2020). It has been hypothesized that the laminar differentiation and 283 
the large number of neurons and areas, in combination with other factors, are key for 284 
cognitive abilities (Changeux et al., 2020; Pennartz et al., 2019a; Pennartz et al., 2019b). 285 

Finally, a multiscale comprehensive understanding of cognitive function and behavior at 286 
the end requires not only to link the cellular with the cognitive perspective, but also to 287 
include intermediate levels of information processing such as areas and cortical columns. 288 
An example are columnar clusters in the human motion complex reflecting specific contents 289 
of consciousness (Schneider et al., 2019). Such clusters are components of the brain’s 290 
organization into areas, layers, and other microstructural variations within areas (Amunts 291 
et al., 2020; Amunts and Zilles, 2015). Examples are giant Betz cells in the internal 292 
pyramidal cell layer of primary motor cortex, which give rise to long-range projections to 293 
the spinal cord, and the very broad and differentiated layer IV in the primary visual cortex, 294 
receiving massive input from the retina via the lateral geniculate body. 295 

Thus, laminar patterns reflect connectivity (Rockland and DeFelipe, 2018), and suggest a 296 
specific role of an area in a network, e.g., underlying cognitive functions and consciousness 297 
(Goulas et al., 2018). The concept of the “localization of function” is more than 100 years 298 
old. It was inspired by early physiological and lesion studies such as pioneered by Broca 299 
(Broca, 1861), Campbell (Campbell, 1905), the Vogts (Vogt and Vogt, 1926) and Foerster 300 
(Foerster, 1934), which observed clinical symptoms, behavioral or brain activity changes, 301 
that were specific for a certain brain region. These studies were complemented by studies 302 
targeting disconnection syndromes, e.g. by Karl Wernicke, who studied brains with 303 
language deficit after brain lesion (Lichtheim, 1885; Wernicke, 1874). This concept 304 
integrates the network perspective with the perspective of brain regions critically involved 305 
in language, and proposed the first comprehensive theory of language. Structure-function 306 
relationships at the level of brain areas play an important role in modern neuroimaging, 307 
and are incorporated in recent concepts of brain segregation and integration (Eickhoff et 308 

al., 2018). 309 

Box 1 The human brain in numbers and examples to illustrate their magnitudes   310 

 311 

The comparison between species demonstrates that differences in brain organization are 312 
not simply a result of scaling as an effect of evolution, but are accompanied by changes in 313 
organization and complexity. A challenge results from the size of the human brain, and its 314 
increasing complexity. Major factors comprise, among others, the highly folded cerebral 315 
cortex, e.g., as compared to lisencephalic brains of rodents, the high degree of inter-316 
subject variability, and the large number of nerve cells, which is estimated to be 86 billion 317 
(Box 1, Fig. 1), as well as a greater molecular diversity of cell types (e.g., (Bakken et al., 318 

Estimated number of nerve cells: about 86 billion, approximately the same 
number of glial cells, about 10.000 synapses per neuron. For comparison, a galaxy 
has about 100 billion stars. 

Type of signal transduction: electro-chemical with nerve conduction velocity 
between 1 m/s to 100 m/s, while the speed of sound is about 343 m/s. 

Total length of connections: 2-3 million kilometers of fibers – for comparison, this 
is more than the diameter of the sun with 1.4 million kilometers 

Mass: 1200 – 1500 g, i.e., about 2% of the body weight 

Energy consumption: 20-30 Watt, i.e., about 20% of the total energy consumption 

of the body 
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2021; Berg et al., 2021; Hodge et al., 2019)). 319 

The large size of the human brain with its complex organization is reflected at the level of 320 
data that describe it (Box 2). While a digitized mouse brain with 1 μm spatial resolution has 321 
a total volume of uncompressed data of 8 TBytes (Li et al., 2010), a similar model of the 322 
human brain, a 'digital twin' of its cellular structure, would be in the range of several 323 
PBytes. The interactive exploration (as opposed to simple storage and visualization) of 324 
such a dataset is beyond the capacities of current computing, and creates significant 325 
challenges in this field (Amunts and Lippert, 2021). Data coming from electron-microscopy, 326 
e.g., multi-beam electron-microscopy, result, for small samples at nanometer resolution, 327 
in comparable data sizes (Eberle and Zeidler, 2018).  328 

 329 

 330 

Fig. 1 Confocal microscopy images of human neurons injected with Lucifer yellow in the 331 
hippocampus. (A, B) Labeled pyramidal cells (green) and DAPI staining (blue) in different regions of 332 
the human hippocampus, including CA1, CA2, CA3 and the dentate gyrus region (DG). (C) Higher 333 
magnification image of the boxed region shown in B. (D) 3D reconstructed cells superimposed on the 334 
confocal image shown in C. (E, F) High-magnification image z projection showing an injected CA1 335 
pyramidal cell (E) and the 3D reconstruction of the same cell (F). Scale bar = 1100 µm in A, B; 460 336 
µm in C, D; 100 µm in E, F. Image taken from (Benavides-Piccione et al., 2019). 337 

 338 

Big data problems also appear when moving from single brain data with high spatial or 339 
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An anatomical 3D model @ 1 micron resolution isotropic needs 2-3 PByte storage per 
brain 

To optimize the computation of fiber tracts with a spatial resolution of 60 microns 
isotropic would require years for the whole Human brain with current technology 

Neuronal network training to extract structural features in images with a spatial 
resolution of 1x1x20 microns would require, for the whole brain, 100 days at whole 
brain level with current technology 

A 10 seconds point-neuron simulation including 4 million neurons requires 10 minutes 
of computation on EBRAINS’ Fenix system (400 core hours) 

One second of simulation of a network of 450,000 cells with a high level of details of 
the hippocampus CA1 region requires at least 20,000 cores and needs 130,000 core 
hours on the Piz Daint supercomputer at CSCS in Lugano, Switzerland. 

Simulation of the binding of a single substance at the molecular level with QM/MM 
(quantum mechanics/molecular mechanics): 20 million core hours on the JUWELS 
supercomputer at JSC, Germany. 

 

 
 

 
 

 

 
 

 
 

 

 
 

temporal resolution to large cohort studies with thousands of subjects, necessary to 340 
address intersubject variability. Large cohort studies are used to study the relationship of 341 
structural, functional, behavioral, life-style, health and genetic data in thousands of 342 
subjects, which are necessary to identify weak factors and their interactions in brain 343 
diseases. For example, the UK biobank provides a unique data set of about 500.000 344 
participants (Bycroft et al., 2018). Neuroimaging PheWAS was recently introduced as a web-345 
based system to analyze gene-brain relationships, and could be used to study the 346 
influences of the apolipoprotein E (APOE) gene on various brain morphological properties in 347 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort; benchmark tests on the UK 348 
biobank were performed as well (Zhao et al., 2020). The Human Connectome Projects has 349 
collected comprehensive neural data and tools, and set a standard in the field (Van Essen et 350 
al., 2013). 351 

These and other examples highlight the increasing role of computing, web-based services 352 
and big data analytics in recent brain research. They also illustrate the relevance of large-353 
scale approaches, national and international consortia and research platforms, going beyond 354 
research at the level of single labs (Vogelstein et al., 2016). Technically, this is challenging 355 
as well: large storage and fast access, as well as powerful computers are required, including 356 
High-Performance Computing. Many applications also need most flexible regimes of work 357 
including interactive supercomputing and/or require to execute complex workflows 358 
(Amunts and Lippert, 2021). To organize research data in such a way that they are 359 
accessible, and well documented, while covering a large spectrum of spatial scales is still a 360 
challenge. High- quality solutions have been proposed for dedicated fields of application, 361 
e.g., Neurodata Without Borders (https://www.nwb.org/) for neurophysiological and 362 
morphological data at cellular level (Teeters et al., 2015). Another example are tissue 363 
models coming from the US BRAIN Initiative Cell Census Networks (BICCN; 364 
https://braininitiative.nih.gov/brain-programs/cell-census-network-biccn), which has 365 
started to publish very large data sets of small tissue pieces, but with ultra-high- resolution 366 
as cell reference atlases Callaway (Callaway et al., 2021). To integrate such information, 367 
coming from a multitude of labs, into their spatial, whole-brain context, however, is 368 
challenging at the computational and neuroinformatics side. 369 

 370 

Box 2 Estimated computational demands to study the human brain 371 
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 372 

The large-scale approach to advance neuroscience 373 

Accordingly, several large-scale approaches in brain research have been started to bundle 374 
activities (Grillner, 2014). These approaches find a counterpart in other communities, e.g. 375 
in the field of astrophysics or climate research, to name only a few of them. Different 376 
strategies have been chosen in the brain research community, e.g., addressing the “mind 377 
of the mouse” (Abbott et al., 2020), or to map structure and function of neuronal circuits 378 
by taking advantage of a non-human primate model, the common marmoset, as in Japan’s 379 
Brain/MINDS project (Okano et al., 2015). The US BRAIN Initiative has an emphasis on the 380 
development of technologies to facilitate neuroscience research, and has just recently 381 
reported the generation of a cell census and atlas of the mammalian motor cortex; it is 382 
argued that a unified and mechanistic framework of neuronal cell type organization 383 
integrating multimodal molecular, genetic and spatial information has been established 384 
(Callaway et al., 2021). ENIGMA is a global alliance for “Enhancing NeuroImaging Genetics 385 
through Meta Analysis” (Thompson et al., 2020). The Human Connectome Projects is 386 
providing a large resource of data and tools to explore connectivity of the living human 387 
brain (http://www.humanconnectomeproject.org/ ), that is used worldwide as a basis of 388 
studies and experiments. These are only a few examples among several in this field. 389 
Comparable approaches can be found in other communities, e.g. biomolecular science 390 
(Elixir; https://elixir-europe.org/) and Covid-19 research (Research collaborations bring big 391 
rewards: the world needs more Nature 594, 301-302 (2021)), but also in other research fields 392 
such as particle physics (https://home.cern/). It has been argued that large-scale 393 
approaches are influential because they enable investigation of continuously arising new 394 
questions from the same data-rich sources and not because they answer any single question 395 
(Abbott et al., 2020). At the same time, such approaches were, from their beginning, subject 396 
to controversy and criticism (Galison and Hevly, 1992; Mainen and Pouget, 2014). 397 

Another argument for large-scale approaches comes from the high complexity of the 398 
research, requiring a collaborative effort over a long time-scale. This is true for research on 399 
the human brain. Its complexity, together with major progress in computing, motivated the 400 
researchers of the Human Brain Project (HBP, https://www.humanbrainproject.eu/en/) to 401 
initiate a large-scale research project in Europe (Markram et al., 2011). The HBP started in 402 
2013 and was set up to get a deeper understanding of the brain in a time of breathtaking 403 
progress in computing and digital technologies (Amunts et al., 2016; Amunts et al., 2019; 404 
Markram et al., 2011). To achieve this aim, the HBP makes two major innovations: first, a 405 
new type of science creating synergy at the interface between empirical research on the 406 
brain and advanced computing, and second, an eco- system and new culture of 407 
collaboration leading to substantial progress in our understanding of the brain, brain 408 
medicine and brain-inspired technologies. 409 

 410 

EBRAINS research infrastructure 411 

Therefore, the HBP decided to develop a distributed, digital infrastructure, EBRAINS 412 
(https://ebrains.eu/ ). It is an open platform for researchers, offering technologically 413 
mature tools and services, which is permanently growing and expanding. While being built 414 
mainly by partners of the HBP, EBRAINS is increasingly serving the whole science 415 
community. It contains different tools and data, which can be combined and linked to each 416 
other in a flexible way, allowing researchers to solve their own research questions (Fig. 2). 417 
EBRAINS aims to become a powerful resource for the scientific community at large. Many 418 
elements of this infrastructure are already in place and can be accessed via its web portal.  419 

EBRAINS is currently used and further developed to advance research mainly in three 420 
neuroscience area centered around connectivity: (i) Multiscale investigation of brain 421 
networks and connectivity, (ii) the role of networks in processes underlying cognition and 422 
consciousness, and (iii) artificial neural networks inspired by the brain, neurorobotics as 423 
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well as neuromorphic processors, which serve both as accelerators for neuro-derived 424 
computation and as tools for neuroscience. A deeper understanding of how neural networks 425 
are built and how they function is a basic neuroscientific question of high relevance, and a 426 
prerequisite to achieve targeted interventions in brain disease and dysfunction, as well as to 427 
develop new diagnostic tools. The perspective of the brain as an embodied network also 428 
lets us draw inspiration for technology. New insights into the brain’s information processing 429 
and network structure also provide a blueprint for research and development in 430 
neuromorphic computing and AI, including deep learning, as well as neurorobotics.  431 

 432 

Fig. 2 The Human Brain Project’ EBRAINS - a research infrastructure providing a broad set of tools and 433 
services which can be used to address challenges in brain research and brain-inspired technology 434 
(https://ebrains.eu/ ). The components can be combined resulting in special purpose solutions matching the 435 
different research challenges. EBRAINS is offering tools and services in the field of data & knowledge 436 
(https://ebrains.eu/services/data-and-knowledge), atlases (https://ebrains.eu/services/atlases), simulation 437 
(https://ebrains.eu/services/simulation), brain-inspired technologies (https://ebrains.eu/services/brain-inspired-438 
technologies), medical data analytics (https://ebrains.eu/services/medical-data) as well as a platform for 439 
collaboration (https://ebrains.eu/services/community). 440 

 441 

Variations in structure and function between brains are a common thread running through 442 
research on connectivity at different spatial scales (Eickhoff et al., 2018; Finn et al., 2020; 443 
Larivière et al., 2019; Sun et al., 2016). Inter-subject variability can be observed in 444 
network organization, including the concentrations of individual receptors, functional 445 
connectivity as captured in fMRI, and structural connectivity at different levels. It expresses 446 
important properties of the brain linked to resilience against disease, and is an important 447 
target of research in itself, providing insights into brain organization (Zilles and Amunts, 448 
2013). The degree to which brains may differ is linked to the genotype, changing during the 449 
whole life span and under conditions of brain diseases, e.g., (Caspers et al., 2014; 450 
Thompson et al., 2020). As a consequence, it is necessary for some research questions to 451 
study (very) large cohorts and 'Big Data' from neuroimaging, genetics, and behavior, to 452 
identify single factors and their interaction influencing the brain. The earlier mentioned UK 453 
biobank is an example of a very large cohort, and includes multimodal imaging data, 454 
sociodemographic, lifestyle and health-related information as well as a wide range of 455 
physical measures (Littlejohns et al., 2020). 456 

A complementary strategy to consider inter-subject differences has been proposed in the 457 
context of the Individual Brain Charting Project (IBC), where spatial representations of 458 
multiple mental functions are targeted in a systematic and very comprehensive way in a 459 
small number of subjects; this also results in large data, because every subject is studied in 460 
depth, many times (Pinho et al., 2018). This data set is accessible through the Knowledge 461 
Graph and multilevel atlas of EBRAINS (Pinho et al., 2020; Pinho et al., 2021b), and can be 462 
analyzed in the context of other data sets that EBRAINS is hosting. 463 

Such digital tools and platforms are functioning ‘stand-alone’, and often have an origin 464 
independent from the HBP. However, bringing them together under the roof of the EBRAINS 465 
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research infrastructure opens up new avenues of application, increases their impact and 466 
makes their application more efficient (Fig. 2). This is feasible because EBRAINS is being 467 
developed collaboratively by neuroscientists and technology experts in a co- design 468 
approach for two reasons – to make sure that it fits the needs of neuroscientists, and to 469 
ensure that the platform is on a high technological maturity level, user-friendly, and 470 
professionally managed. It is also developed collaboratively with philosophers, ethicists, 471 
social scientists and public engagement experts, to build a research infrastructure with users 472 
that engage with and understand the ethical, philosophical and societal aspects of their 473 
work, and an infrastructure that is itself reliably, sustainably and responsibly constructed 474 
and managed. 475 

EBRAINS offers different services (https://ebrains.eu/services/ ) for curating and sharing 476 
data and models, contributing to and accessing brain atlases, using modeling and simulation 477 
tools, running closed-loop AI and neurorobotics experiments, retrieving medical brain 478 
activity data, and computations based on high-performance computing. The idea behind this 479 
is to enable workflows that seamlessly connect elements of the different services. To prove 480 
this, so-called showcases have been developed by the HBP (Box 3). 481 

Integrating brain data and knowledge from different research approaches requires curation, 482 
proper annotation and provenance tracking. Through the EBRAINS Knowledge Graph, a 483 
flexible and scalable metadata management system accompanied by a search user 484 
interface, data are made findable, accessible, interoperable and reusable, i.e., FAIR 485 
(Wilkinson et al., 2016). Knowledge graphs are powerful tools for community-based 486 
classification and data aggregation and are also being considered for use in other large 487 
brain projects (Yuste et al., 2020). A major challenge for developing a Knowledge Graph is 488 
that brain data are massive, complex, semantically and syntactically diverse, coming from 489 
many different studies. Accordingly, there is a great need for data and software standards 490 
to enable collaboration between scientists internationally (Abrams et al., 2021). 491 

 492 

 493 

 494 
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Fig. 3 The multi-level Human Brain Atlas provides different maps, e.g., (A) Julich-Brain 495 
cytoarchitectonic atlas (Amunts et al., 2020), (B) DTI-based maps of fiber bundles Guevara (Guevara 496 
et al., 2017; Guevara et al., 2012) and (D) functional parcellation based on task-based fMRI (Pinho et 497 
al., 2021a). (C) Microscopical data are available through the BigBrain model (Amunts et al., 2013). 498 
The atlas provides different types of data in a common spatial framework and allows switching 499 
between template spaces. 500 

Brain atlases have a central role to visualize brain data in their spatial context, e.g., to 501 
interpret neuroimaging data from living human subject and patients, but also to derive 502 
therefrom input for subsequent analysis and model building. Comparative approaches 503 
targeting cross-species differences and similarities represent an important field of brain 504 
research, but there is still a gap in linking the atlases of the different brains under a 505 
common technological umbrella, which creates difficulties, e.g., in understanding 506 
homologies. The HBP human brain atlas aims to address this need, and to develop an atlas 507 
framework which allows reference to maps of human brain organization, those of rodents, 508 
and in the future also monkey brains. The atlas is comparable to “Google Earth”, it allows 509 
zooming in and out, the visualization of regions of interest, data extraction from such 510 
regions, uploading new maps and results from the user’s own research (Fig. 3). The BigBrain 511 

is an anatomical model at 20 m resolution (Amunts et al., 2013), allowing to map cellular 512 
information into a 3D reference space – from cortical layers (Wagstyl et al., 2020) and 513 
areas (Schiffer et al., 2021), to volume-of-interests integrated through the VoluBA atlas-514 
tool (https://ebrains.eu/service/voluba/ ). The latter also opens the perspective to 515 
integrate data methods with subcellular resolution, including, e.g., those from electron 516 
microscopy, light sheet or two photon imaging. In addition, region-based data, e.g., from 517 
multiple receptors of neurotransmitters have been connected to cytoarchitectonically 518 
defined areas (Palomero-Gallagher and Zilles, 2019; Zilles and Amunts, 2009). The BigBrain 519 
is compatible to atlas data from neuroimaging, and serves as an input for simulation, e.g., 520 
using The Virtual Brain (see Showcase 1, Box 3).  521 

Julich-Brain is a part of the Human Brain Atlas and serves as a cytoarchitectonic reference, 522 
while taking inter-subject variability into account (Amunts et al., 2020). It is linked to a 523 
comprehensive map of DTI-based fiber tracts (Guevara et al., 2017; Guevara et al., 2012), 524 
functional parcellation schemes based on multiple fMRI in a well- defined group of subjects 525 
(Pinho et al., 2021a), which provide insights into the cognitive dimension of brain 526 
parcellation. MR-based approaches are central to open up applications into in vivo imaging, 527 
which is relevant for medical research. Being on EBRAINS allows, for example, directly 528 
linking information from the atlases with models and simulation. In addition to a web-529 
based viewers, python clients allow a fully programmatic software coupling, e.g., with 530 
simulation. 531 

Simulation is increasingly enabled by the computational capabilities and capacities becoming 532 
available in Fenix (see below) to handle the very large data representing a human brain, 533 
and is in fact driving the development of computer science through its requirements. In the 534 
past few years, models of the cerebral cortex (Markram et al., 2015)), hippocampus 535 
(Coppolino et al., 2021), cerebellum (Casali et al., 2020), basal ganglia (Grillner and 536 
Robertson, 2016), typically at the cellular/circuit level, large-scale brain-simulations based 537 
on point neurons (Potjans and Diesmann, 2014) or mean-field network modelling (Goldman 538 
et al., 2021), as well as models of cognitive functions, such as spatial navigation (Coppolino 539 
et al., 2021), object recognition, scene understanding, visuo-motor functions, attention, 540 
perception and learning have been developed, and are being constantly improved.  541 

Instead of performing a single simulation, targeted to “fit for everything", it became 542 
evident that various alternative approaches that complement each other, and are 543 
becoming more and more interlinked, are the way to proceed (Einevoll et al., 2019). The 544 
HBP has made available about 94 open-source models of neurons and brain circuits. They 545 
form reproducible building blocks for more large-scale integrated brain models. Related 546 
simulation engines (https://ebrains.eu/services/simulation/ ) allow the creation of a kind 547 
of ‘digital twins”: from molecular to whole brain levels. Some models are directly linked to 548 
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structural information from the brain atlases, and a first multi-level model of a human 549 
connectome, capturing connectivity of nerve cells, large-scale fiber tracts and functional 550 
neuronal networks, with underlying molecular, cellular and regional brain organization is 551 
under development. In parallel, there are also efforts towards cognitive models and 552 
(artificial) brain-inspired cognitive architectures are being constructed. Whereas in the past 553 
models aimed to reproduce either cognitive processes or physiological brain dynamics, 554 
current efforts are directed at models combining both dimensions: cognitive processing in 555 
dynamic brain architectures (Jaramillo et al., 2019). 556 

Multilevel simulations for bridging several brain scales are currently realized by coupling 557 
simulators for different brain scales, such as single neurons or neuronal populations. Co- 558 
simulation technology now enables the synchronous simulation of bi-directionally coupled 559 
networks of firing-rate population models (e.g., in the TVB simulator) with regions of 560 
individual/networked neurons spiking models (e.g., in the NEST simulator; 561 
https://ebrains.eu/service/nest-simulator/). The coupling with other simulators (NEURON 562 
and Arbor; https://ebrains.eu/service/arbor/) is a topic of ongoing research. 563 

It has been claimed simulation research represents the next phase of brain research (Fan 564 
and Markram, 2019). However, simulation efforts do not replace empirical research, but 565 
rather complement it. Ideally, a kind of cross-talk can be initiated, with simulation 566 
informing empirical research and vice-versa. For example, it layer 2/3 pyramidal neurons 567 
from the human temporal cortex have a membrane capacitance that was predicted by 568 
fitting in vitro voltage transients to theoretical transients and then validated by direct 569 
measurement in patch experiments (Eyal et al., 2016). 570 

 571 
1. Degeneracy in neuroscience - when is Big Data big enough? Brains are maintaining 572 

full functionality within a range of normal variability. Finding out how and which 573 
structural changes affect (or not) brain function is an enormous computational 574 
challenge. Mastering this challenge will assist in the effort to deliver personalized 575 
brain medicine (Jirsa et al., 2017).  576 

2. Improving epilepsy surgery with the Virtual BigBrain. “The Virtual Big Brain” aims to 577 
model and predict activity in an individual patient brain. It links data from high 578 
resolution brain mapping to brain avatars, running on high-performance computers 579 
to simulate the spread of individual seizure activity along cortical and subcortical 580 
surfaces (Proix et al., 2017).  581 

3. Brain complexity and consciousness. Using new methods capable to differentiate 582 
states of consciousness from brain activity (Comolatti et al., 2019), and based on 583 
EBRAINS, brain simulations of sleep and wake modes have been created Goldman 584 
(Goldman et al., 2021). These simulations further the understanding of multiscale 585 
brain dynamics of different brain states towards individualized diagnosis and 586 
treatment, e.g., in unresponsive wakefulness or locked-in conditions.  587 

4. Object perception and memory. To study perception, a brain-based perceptual-588 
cognitive architecture was integrated in a rodent-like robot. This architecture 589 
enables the robot to move around, navigate, remember, and find its way in simple 590 
environments. Due to its multisensory predictive coding model (Pearson et al., 591 
2021), it shows enhanced place recognition capacity. These studies pave the way to 592 
create brain-inspired robots with perceptually enhanced navigation capabilities.  593 

5. Dexterous in-hand object manipulation. Complex behaviors seem to be built on pre-594 
existing, simpler, building blocks (‘motor primitives`). To investigate how they 595 
emerge, an anthropomorphic robotic hand is trained in several stages using a brain-596 
inspired cognitive architecture. Increasingly complex actions are learned ultimately 597 
enabling the model to manipulate objects in the robotic hand. This approach 598 
bridges AI, neuroscience and robotics to help to explain why human brains learn 599 
skills with much less trials than standard artificial neural networks.  600 
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 601 
Box 3: Showcases illustrating the applications of EBRAINS for neuroscientific research. All showcases 602 
rely on different elements of EBRAINS, and combine different approaches including simulation, 603 
robotics, atlasing, theory, data science and others. 604 
https://www.humanbrainproject.eu/en/science/highlights-and-achievements/  605 
 606 
Simulation of human brain models is in most cases extremely compute intensive, and 607 
requires access to the most recent supercomputing resources. The Fenix infrastructure 608 
federates scalable storage and computing resources at multiple leading HPC sites in Europe 609 
in order to provide a single and readily available base infrastructure for data exchange and 610 
demanding computational tasks. On top of the Fenix infrastructure, any type of scientific 611 
digital service platform can be operated via RESTful APIs (https://fenix-ri.eu/ ). Fenix that 612 
emerged from computer science research in the HBP is an infrastructure- as-a-service (IaaS) 613 
for EBRAINS. It has been developed to master the big data challenge of modern brain 614 
research. Generic-purpose and domain-specific services provide access to scalable and 615 
interactive computing resources via simple-to-use interfaces.  616 

 617 

Digital tools for diagnostics and treatments 618 

Understanding inter-subject variability in brain structure, connectivity and signal 619 
transduction on the one hand, and the factors modulating it at the different levels of brain 620 
organization on the other, is a central question for improving diagnostics and treatment of 621 
brain diseases, and key towards personalized brain medicine. Brain diseases represent a 622 
major challenge, not only for patients and their relatives, but also in terms of a burden for 623 
the health system and more generally, society (Box 4).  624 

 625 

  

Mental, neurological and substance abuse disorders account for more than 10% of 
global 

DALYs (DALY, or Disease-Adjusted Life Years, is a health metric calculated as the sum 
of 

years of life lost and years lived with 
disability 

). Six out of the ten disorders with 
highest 

DALYs are related to the brain. 

Brain diseases represent a considerable social and economic burden in Europe. With yearly 
costs of about 800 billion euros and an estimated 179 million (DiLuca and Olesen, 2014) 
people afflicted in 2010, brain diseases are an unquestionable emergency and a grand 
challenge for neuroscientists. 

Epilepsy is one of the most common neurological disorders with an estimated prevalence 
of 50 million worldwide according to the World Health Organisation (2020). The 
complexity of the disease with its vast array of signs, symptoms, and underlying causes of 
seizures has been challenging to characterize, treat, and understand. 

Worldwide, around 50 million people have dementia, with nearly 60& living in low- and 
middle-income countries. Every year, there are nearly 10 million new cases. The total 
number of people with dementia is projected to reach 82 million in 2030 and 152 in 2050 
(source WHO https://www.who.int/news-room/fact-sheets/detail/dementia). 

Box 4 Brain Disorders and their relevance for society 626 
 627 

Digital and computational tools are increasingly important in developing new diagnostic 628 
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tools and options for therapy. 629 

The role of modeling and simulation in diagnosis and therapy 630 

Brain modeling and simulation play an increasing role in the development of new diagnostic 631 
and therapeutic solutions. Theoretical concepts built into simulation technologies such as 632 
The Virtual Brain (TVB; Fig. 4) (https://www.humanbrainproject.eu/en/medicine/the- 633 
virtual-brain/ ) allow the computation of patient-specific brain models serving as in-silico 634 
platforms for clinical hypothesis testing, improved diagnosis and development of novel 635 
interventions (Jirsa et al., 2017; Sanz-Leon et al., 2015). The generative brain models 636 
establish a causal hypothesis and are then evaluated against the patient’s own brain 637 
imaging data (Friston et al., 2003; Jirsa et al., 2017). For instance, brain regions and fiber 638 
tracts serve as stimulation targets in TVB for the study of diagnostic and curative 639 
stimulation (Spiegler et al., 2016). ‘Virtual surgery’ can be performed mimicking a patient’s 640 
actual surgery and simulating subsequent neural activity on the modified connectome, 641 
allowing the optimization of the efficiency of surgical interventions (An et al., 2019; Olmi 642 
et al., 2019) and the prediction of surgery outcomes (Aerts et al., 2020). The approach has 643 
also been applied to link molecular aspects of neurodegeneration in Alzheimer’s disease with 644 
large-scale network modeling (Stefanovski et al., 2021). Modeling and simulation connect 645 
the advances in our understanding of brain function to a recent surge in the technological 646 
possibilities to write to and read from the brain, bringing together academic researchers, 647 
medical doctors and companies to expand the possibilities of linking digital technology to 648 
the nervous system and profoundly improve the lives of patients. It has recently been 649 
reported that researchers have developed a neuroprothesis for the blind, which was tested 650 
in monkeys (Chen et al., 2020). In this experimental study, monkeys were able to recognize 651 
different stimuli as simple shapes, motions or letters. The potential applications of brain-652 
machine interfaces are expanding at a rapid pace, prompting the OECD “Science, 653 
Technology and Innovation Outlook” (OECD, 2016) to list neurotechnology as one of the ten 654 
most promising and disruptive future technologies. 655 

Similarly, the HBP will increase the availability of integrated data and computational models 656 
supporting brain state transitions, network complexity and cognitive functions. The 657 
Perturbational Complexity Index (PCI) is a theory-inspired metric designed to gauge 658 
empirically the brain’s capacity for integrating information (Comanducci et al., 2020). The 659 
PCI quantifies the algorithmic complexity (information) produced by the causal interactions 660 
that are triggered in the brain by a direct cortical perturbation. In practice PCI can be 661 
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computed by compressing the overall brain electrophysiological response to a direct 662 
cortical perturbation with transcranial magnetic stimulation as well as by intracortical 663 
stimulation. I.e., the PCI is therefore another example illustrating how knowledge from 664 
basic neuroscience is informing theory and modeling, to be transferred into brain medicine. 665 

 666 

Fig. 4 The Virtual Brain, a data driven neuroinformatics tool, fusing individual brain imaging data 667 
with  atlas data and state-of-the-art brain modeling, for personalized simulations of brain activity 668 
and clinical interventions. Generative brain models operationalize a causal hypothesis, which is 669 
evaluated against the patient’s own brain imaging data using variants of dynamical causal modeling 670 
such as Monte Carlo simulations (Hashemi et al., 2021; Hashemi et al., 2020; Sip et al., 2021; 671 
Vattikonda et al., 2021) (https://www.humanbrainproject.eu/en/medicine/the-virtual-brain/ ). 672 

 673 

The Medical Informatics Platform 674 

A Medical Informatics Platform (MIP; https://ebrains.eu/service/medical-informatics-675 
platform/) enables the analysis of large volumes of patient data throughout Europe (Redolfi 676 
et al., 2020). The MIP has opened the possibility to collect data from different hospitals, 677 
while considering high standards for data safety and security. It solves the data protection 678 
problem: locally installed software allows pooling of pre-analyzed data. These data can no 679 
longer be assigned to individual patients, but still provide valuable information. For diseases 680 
such as Alzheimer's and Parkinson's, this enables big-data and AI-driven approaches. Rare 681 
diseases with few cases per hospital can thus be analyzed in a statistically valid way. This 682 
could bring real breakthroughs, especially for this group, which together account for 20 % 683 
of all brain diseases. 684 

The Human Intracerebral EEG Platform  685 

Human intracranial electroencephalographic (EEG) data describe brain dynamics with high 686 
temporal resolution, and provide unique insights into brain dynamics. At the same time, only 687 
a few centers derive such data from patients, and it is still difficult to integrate and analyze 688 
such patient data with sufficiently large numbers. The Human Intracerebral EEG Platform 689 
(HIP), together with analysis services, is being developed to capture such data 690 
(https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-platform/). 691 
The idea behind is to pool such data from different sources. This will help to achieve a 692 
critical mass of valuable and unique patient data, to enable new clinical analyses based on 693 
large cohorts. It will also contribute to basic neuroscience research by providing insights 694 
into brain activity and its changes during cognitive tasks. 695 

 696 

Neuro-inspired technologies of EBRAINS 697 

Neuro-inspired technologies have a special position among research in the broader field of 698 
brain research as they are not only a tool to get new insights into the brain, but are also 699 
inspired by brain research to enable new technologies and computing. This includes (i) 700 
artificial neuronal networks and AI in general, (ii) neuromorphic computing, (iii) 701 
neurorobotics, as well as (iv) high-performance and modular supercomputing. The following 702 
paragraphs illustrate some examples. 703 

Artificial neuronal networks and AI 704 

Considerable progress has been made in implementing artificial neuronal networks, e.g., to 705 
classify (medical) images, and to produce in silico (cognitive) functions that are comparable 706 
to human cognitive functions. Recent progress is made also on applications that are more 707 
challenging to teach neural networks such as goal-directed planning, decision making and 708 
more general problem solving. The way artificial neuronal networks learn, however, 709 
currently differs significantly from the way we humans learn. Important aspects of learning 710 
in the human brain are not yet well understood, and new mechanisms of learning are 711 
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discovered, which will further inform such approaches. Only recently, it has been shown that 712 
hippocampal output influences memory formation in the neocortex via sensory cortical layer 713 
1 in rodents (Doron et al., 2020). It is expected that a systematic analysis of the differences 714 
and commonalities between artificial and natural networks will increasingly contribute to a 715 
better understanding of basic neuroscience and information processing, and result in 716 
improved concepts derived from large-scale and cellular networks in the brain. 717 

New machine learning algorithms such as e-prop (short for e-propagation) use spikes in their 718 
model for communication between neurons in an artificial neural network. The cells only 719 
become active when their spikes are needed for information processing in the network. 720 
Learning is a particular challenge for such sparsely active networks, since longer 721 
observations are required to determine which neuron connections improve network 722 
performance. In addition, deep neural networks are by design well-tempered mathematical 723 
objects that allow back-propagation of error signals to drive learning through updates of 724 
synaptic weights, and spikes introduce discontinuities in neuronal dynamics that preclude 725 
the use of similar mathematical approaches (with some possible workarounds (Bellec et al., 726 
2020; Zenke et al., 2021). Whether back-propagation itself is the right approach to capture 727 
the essential learning abilities of the human brain has long been an object of debate 728 
(Grossberg, 1988). E-prop now provides new solutions by means of a decentralized method, 729 
in which each neuron documents when its connections were used in a so-called e-trace 730 
(eligibility trace) (Bellec et al., 2020). It is speculated that e-prop will drive the development 731 
of a new generation of mobile learning computing systems that no longer need to be 732 
programmed but learn according to the model of the human brain and thus adapt to 733 
constantly changing requirements. 734 

Methods have been proposed to further facilitate learning in recurrent, spiking neural 735 
networks, based on a target-based learning scheme in which the learning rule derived from 736 
likelihood maximization is used to mimic a specific spatio-temporal spike pattern that 737 
encodes the solution to complex temporal tasks (Muratore et al., 2021). 738 

Highly detailed simulations of morphologically realistic, multi-compartment neuron models 739 
may also yield a unique perspective on the computational limitations of networks built on 740 
point neuron models (Gidon et al., 2020), and by extension, of all standard deep neural 741 
networks. A new study set out to find a computational method to make highly detailed 742 
models of neurons simpler, while retaining a high degree of realism (Wybo et al., 2021). It 743 
shows that (back-propagating) action potentials, Ca2+ spikes, and N-methyl-D-aspartate 744 
spikes can all be reproduced with few compartments. The study also provides software that 745 
automates the simplification, to enable the inclusion of dendritic computations in network 746 
models. 747 

In contrast with our everyday experience using brain circuits, it can take a prohibitively long 748 
time to train a computational system to produce the correct sequence of outputs in the 749 
presence of a series of inputs. By directly following the natural system's layout and circuitry 750 
of the hippocampus, models allow a level of efficiency and accuracy to be reached that 751 
opens the way to a new generation of learning architectures, including one shot learning 752 
(Coppolino et al., 2021). 753 

The microcircuit of the cerebellum transforms internal signals implementing de facto 754 
computational algorithms that can be modified through learning. The discovery of 755 
adaptable transmission channels supports the long-sought spatiotemporal reconfiguration of 756 
the inputs that the cerebellum receives through its numerous sources. This turns into a 757 
multidimensional remapping of brain activity that allows the brain to learn from errors 758 
implementing sensorimotor and cognitive controllers, and to operate in a predictive manner. 759 
The new microcircuit properties are going to be implemented into large-scale models and 760 
inserted into closed-loop controllers, neurorobots, neuromorphic computers, and virtual 761 
brains, applicable to neuro-engineering, artificial intelligence, and neurology (Casali et al., 762 
2020). 763 

New computational approaches and models are being developed to underpin perception as 764 
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a learning process in which the brain builds predictions and representations of what causes 765 
sensory inputs to arise the way they do (Pennartz et al., 2019a). Basic predictive coding 766 
approaches have been extended to large-scale, deep networks trained by Hebbian learning 767 
(Dora et al., 2021) have begun to integrate multiple sensory modalities (vision and touch) 768 
and have been made more neurobiologically realistic by implementing the principles in 769 
single-cell and spiking neural networks (Pearson et al., 2021). 770 

Neuromorphic Computing 771 

Synergies between advances in brain science and in neuromorphic, brain-inspired computing 772 
technologies are currently being explored, showing the potential of these technologies. The 773 
high energy consumption of artificial neural networks' learning activities is one of the biggest 774 
hurdles for the broad use of Artificial Intelligence in mobile applications. One approach to 775 
solve this problem can be gleaned from knowledge about the efficient transfer of 776 
information between neurons in the brain. Neurons send spikes to other neurons, but, to 777 
save energy, only as often as absolutely necessary.  778 

Two complementary neuromorphic platforms are offered at EBRAINS as open services 779 
(https://ebrains.eu/service/neuromorphic-computing/ ): 780 

SpiNNaker (Furber and Bogdan, 2020) supports very large-scale discrete time numerical 781 
simulation. Recent studies have shown that detailed simulations of the cortical microcircuit 782 
running on neuromorphic hardware (Fig. 5A) can outperform those on conventional 783 
machines, in terms of improved throughput and energy efficiency (Rhodes et al., 2020; van 784 
Albada et al., 2018). 785 

BrainScaleS supports analogue continuous time accelerated emulation, compressing the 786 
time-scales required for long-term learning experiments by three to four orders of 787 
magnitude. Its modelling capabilities include structured neurons and active-dendrites (Aamir 788 
et al., 2018; Billaudelle et al., 2021). 789 

 790 

Fig. 5 Technologies driven by neuroscience. A The million-processor SpiNNaker machine at 791 
Manchester. B The user interface of the Neurorobotics Platform NRP, executing the virtualized copy 792 
of a real mouse experiment. The mouse body shown in the live rendering on the left is connected to 793 
a brain simulation that controls its muscle activations. Body movements are plotted in the graph at 794 
the bottom. 795 

 796 

Neuromorphic technology is primed to converge with AI, offering much-needed perspectives 797 
in areas where the power demands of even the latest AI-specific chips limit their use at the 798 
edge to inference rather than learning. As such, EBRAINS services provides an opportunity 799 
for researchers working on this convergence, in the form of a toolchain that connects 800 
conceptual exploration to application prototyping and finally implementation. Edge 801 
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computing applications are poised to benefit most from the emergence of neuromorphic 802 
chips capable of both energy-efficient, low-latency processing of data streams and 803 
concurrent learning based thereon. Autonomous robotics will also greatly benefit from such 804 
chips, insofar as they are in all likelihood key enabling technologies towards the 805 
implementation of complex cognitive functions such as decision-making, situational 806 
awareness, contextual adaptability, etc. Understanding how those arise from the human 807 
brain, both at the computational and implementation level, is a challenge taken on by the 808 
HBP. 809 

Neurorobotics 810 

Modeling how the brain is situated in a specific environment with which it interacts through 811 
its body is mandatory for understanding how neural activity and physical behavior give rise 812 
to each other. In line with the position of enactivism, embodied modeling of perception 813 
and cognition stresses that actions of the body endow the brain with causal power in the 814 
world and that any neuronal network likely serves the purpose (directly or indirectly) to 815 
enhance successful interaction with a complex, dynamic, environment. Neurorobotics 816 
provides both the tools and the theory for embedding brain simulations into robotic bodies 817 
to establish a closed loop of perception, cognition and action between the brain, its body 818 
and the environment (Fig. 5B). This makes it possible to not only create highly detailed 819 
models of the brain’s structure but to also reproduce the dynamics that emerge from them 820 
under highly realistic conditions. 821 

The Neurorobotics Platform (https://neurorobotics.net/ ) of the HBP (Falotico et al., 2017) 822 
provides an integrated cloud-based simulation framework for the design and execution of 823 
virtual neurorobotics experiments in physically realistic environment models (Fig. 3B). The 824 
platform is able to run large-scale spiking neuronal networks implemented with the NEST 825 
simulator on supercomputers on the order of millions of neurons, billions of synapses (Helias 826 
et al., 2012)), and supports modular, heterogeneous control architectures for the 827 
simulated agents. It is also accessible via https://ebrains.eu/service/neurorobotics-828 
platform/.  829 

As the Neurorobotics Platform contains simulation models and tools required to replace all 830 
components of traditional neuroscience experiments by digital twins, it lays the foundations 831 
for virtualized neuroscience. Fully virtual experiments cannot only reproduce previously 832 
achieved findings from the lab but importantly also predict new results at high speed and 833 
low cost. The more these predictions are refined by subsequent experimental ground truth, 834 
the better future predictions get. This makes research not only more efficient but 835 
considerably enlarges the exploration space. 836 

Another major advantage of virtual neuroscience is that the full state of the experiment 837 
from the activations of muscles to the firing of individual neurons is observable any time at 838 
any desired level of detail. This enables a new form of real-time brain atlases where not 839 
only the brain’s structure can be observed but also its live activity. These atlases therefore 840 
not only represent space but also time. 841 

Closed-loop neurorobotic systems are not constrained to virtual experiments. They can also 842 
be set up in the real world by connecting a brain simulation to a physical robot. In particular, 843 
neurorobotics allows for embodiment of cognitive architectures on anthropomorphic robots 844 
thus enabling the transfer of emulated human capacities to artificial agents. The adaptive 845 
"brains" of these robotic agents are amenable to close scrutiny, and inspecting how they 846 
solve goal-directed tasks may inspire new testable hypotheses whether the human brain has 847 
developed similar representations and processes (Kroner et al., 2020). Neuromorphic 848 
computing is an essential prerequisite for these studies because the simulation of the neural 849 
models needs to run in real-time. This makes neurorobotics an ideal tool to prototype 850 
applications that embed neuromorphic computing at their core, but also rely on 851 
complementary, more standard technologies. Such prototyping is made all the easier by the 852 
fact that the Neurorobotics Platform can natively use neuromorphic hardware as a simulation 853 
backend and will also be enabled in the future to perform hardware-in-the-loop simulations. 854 
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Building adaptive biologically inspired cognitive architectures contributes to our 855 
understanding how the brain works by emulating some aspects of its functions. For example, 856 
large-scale neural network models are created that are themselves composed of smaller 857 
neural network modules that correspond roughly to specific brain areas. These types of 858 
architectures enable the development of new types of training protocols and the 859 
investigation of long-standing questions such as the separation problem and the binding 860 
problem (von der Malsburg, 1999). Neurorobotics therefore not only provides the foundations 861 
for virtual neuroscience but also enables effective knowledge transfer to artificial 862 
intelligence and machine learning. 863 

 864 

High-performance and modular supercomputing   865 

While neuroscience in the past rather rarely required extreme-scale computing, the need to 866 
simulate at large scale or to process and analyze data sets in the PByte range has changed 867 
the situation (e.g., (Amunts et al., 2014; Amunts and Lippert, 2021; Einevoll et al., 2019; 868 
Franceschini et al., 2020; Menzel et al., 2019; Rossetti et al., 2019)) and motivated the 869 
development of the federated Europe-wide HPC infrastructure Fenix (https://fenix-ri.eu/ 870 
). Meanwhile, a strong community has emerged to drive such development, and Fenix 871 
resources are openly available for compute and storage intensive projects. The methods 872 
that are being developed in this context often go beyond neuroscience, and are open to 873 
other research communities. Both edge computing and cloud computing are considered for 874 
use cases from neuroscience. The HBP is developing tools for interactive supercomputing, 875 
web-based visualization and analysis of big data in the context of Fenix. Researchers are 876 
preparing use-cases for Exascale performance on modular supercomputers to be built in 877 
2023/24 under the umbrella of the EuroHPC Joint Undertaking and participating countries 878 
to coordinate their efforts and pool their resources in Europe to enable world-class 879 
Exascale supercomputers, together with researchers from other communities. Joint 880 
interests in the development of high-performance computing, its hardware and software, 881 
will open new perspectives for collaborative project across different research domains.  882 

 883 

Collaborative perspectives 884 

In the middle and long run, the aim is to further develop EBRAINS as a global platform for 885 
collaboration and exchange among researchers, a mechanism for users to participate in the 886 
development of new tools, methods, and to provide and exchange their data. Such digital 887 
research infrastructure is not only relevant for individual collaboration between researchers, 888 
but also between large-scale initiatives, e.g., the US BRAIN Initiative, with initiatives such 889 
as Healthy Brains for Healthy Lives (HBHL) in Canada, and brain initiatives in China, Japan, 890 
Australia, to name some of them. For example, the Canadian-German collaboration HIBALL 891 
(https://bigbrainproject.org/hiball.html ) focuses on the BigBrain as a high-resolution model 892 
of the human brain (Amunts et al., 2013) to reinforce utilization and co-development of the 893 
latest AI and high-performance computing technologies for building highly detailed 3D brain 894 
models, and connects EBRAINS and HBHL. It provides next-generation brain models, 895 
integrates multimodal data to the BigBrain, takes care about interoperability of scientific 896 
workflows, and develops new deep neural network architectures. It has built an active 897 
community in a short time that uses and further develops tools for brain research. Such 898 
synergy became feasible also because it can build upon existing infrastructures both in 899 
Canada and Europe. It would also be a tool that can be used to link ultra-high-resolution 900 
models of volume of interest such as developed in the BRAIN Initiative Cell Census Network, 901 
e.g., from the primary motor cortex (Callaway et al., 2021). This would have the advantage of 902 
integrating highly detailed, multimodal information into its spatial context, thereby linking 903 
advantages of the bottom-up with the top-down approach. 904 

Several brain initiatives have founded the International Brain Initiative (IBI; 905 
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https://www.internationalbraininitiative.org/ ) to join forces. As an integral part of the 906 
science and technology agenda, IBI addresses questions of ethics, philosophy and society. 907 
Specifically, at the interface of neuroscience and technology, the clinic and society, new 908 
challenging issues arise, including, for example, data protection and privacy, 909 
pharmacological and digital neuroenhancement, and dual use of brain-related technologies 910 
(Flick et al., 2020; Salles et al., 2019a). Another new field is concerning the ethics of AI, 911 
which plays an increasing role (Stahl, 2021). All these questions have in common that they 912 
cannot be answered by a single discipline, but require a cross-disciplinary interaction and 913 
broader discussion in society. Technical advances need to be delivered in a way that reflects 914 
European values and principles, such as non-discrimination, fairness and privacy. Ethical 915 
considerations like these are an integral part of technology developments in EBRAINS. 916 
Through the efforts of the Human Brain Project, EBRAINS is intended to integrate neuroethics 917 
and philosophical analysis to enhance the neuroscientific work (Evers, 2009; Salles et al., 918 

2019a; Salles et al., 2019b). Philosophical analysis provides clarification of scientific 919 

concepts such as behavior, intelligence, digital twin and consciousness and explores how 920 
neuroscientific knowledge is constructed, what are its underlying assumptions and how they 921 
are justified, how results may be interpreted, and why or how empirical knowledge of the 922 
brain can be relevant to philosophical, social, and ethical concerns (Pennartz, 2015; Salles 923 
et al., 2019b).  924 

Conceptual clarification and analysis are the basis for addressing more practical issues 925 
raised by neuroscientific research from data protection autonomy and identity concerns 926 
(Amadio et al., 2018)). EBRAINS is expected to adopt an inclusive and co-creative way of 927 
working, engaging with multiple audiences and communities to discuss ethical issues, 928 
developing novel insights into responsible innovations and their clinical and societal 929 
applications (https://ebrains.eu/discover/ ). 930 

 931 

Conclusions  932 

To achieve a comprehensive understanding of the human brain, its connectome and 933 
parcellations means understanding the multi-level organization of the brain as an embodied 934 
network and complex system enabling perception, action, consciousness and cognition. 935 
Combining the perspectives of multi-level brain organization with embodiment is not only 936 
relevant to capture the full scope of brain diseases and to be able to develop new 937 
therapies, but also for the development of neuro-inspired technologies, and future 938 
neurorobotics. 939 

There is an urgent need to accelerate efforts for mental and brain health by making full use 940 
of insights from brain research and modern digital tools. Based on use cases from neurology 941 
already available in EBRAINS, including the Medical Informatics Platform and the Human 942 
Intracerebral EEG Data Platform, it is now being further developed to support research in 943 
mental health, psychiatric disorders, neurosurgery, and neuroradiology, but also more 944 
broadly in the medical field. 945 

Insights into fundamental questions of brain organization will provide the key to new 946 
computing technologies, artificial neuronal networks, cognitive computing and 947 
neurorobotics as an integrative overarching technology both for experimentation and for 948 
substantially advancing real robotics. Making such technologies more “neuro-inspired” is 949 
expected to significantly speed up their development. Neurorobotics and neuromorphic 950 
computing will benefit from being increasingly neuro-inspired. 951 

The amount of brain data is increasing rapidly. The effort in terms of time, knowledge and 952 
methodology needed to make it findable, accessible, interoperable and reusable (FAIR) has 953 
long been underestimated and resources should be planned, from the very beginning of each 954 
research project, to address this. 955 

The Human Brain Atlas allows access to multiple brain data according to their spatial 956 
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organization through viewers, but also fully programmed software coupling. This might be a 957 
game changer for analyses of big and complex data on systems of the highest performance, 958 
but also for modeling and simulation, which become biologically more realistic. 959 

Modeling and simulation have started to develop from different angles, and they used 960 
different approaches. But now we are in a position where we can link them, which enables 961 
bridging the different scales, to better constrain and to verify results of simulation. 962 

Collaboration across boundaries of institutions, sectors, nations, research disciplines and 963 
cultures is indispensable for progress in neuroscience. Moreover, insights from brain research 964 
will increasingly influence learning and education and have an impact on our society. 965 

To stay ahead of emerging ethical, societal and legal issues, and to strengthen the societal 966 
benefit and acceptability of its findings, EBRAINS need structures and strategies for engaging 967 
in dialogue with communities on issues of immediate and long-term relevance, including 968 
data ethics, neuroethics, animal use and well-being, dual use, gender equality and diversity. 969 

The culture of collaboration in the neurosciences is changing. The authors are convinced 970 
that we can contribute to making it more open, cooperative and participatory, for the 971 
benefit of neuroscience, medicine and society, which marks the beginning of a new paradigm 972 
to understand the brain. 973 

 974 
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