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Abstract Sustainable forest management requires

understanding of ecosystem phosphorus (P) cycling.

Lang et al. (2017) [Biogeochemistry, https://doi.org/

10.1007/s10533-017-0375-0] introduced the concept

of P-acquiring vs. P-recycling nutrition strategies for

European beech (Fagus sylvatica L.) forests on silicate

parent material, and demonstrated a change from

P-acquiring to P-recycling nutrition from P-rich to

P-poor sites. The present study extends this silicate

rock-based assessment to forest sites with soils formed

from carbonate bedrock. For all sites, it presents a

large set of general soil and bedrock chemistry data. It

thoroughly describes the soil P status and generates a

comprehensive concept on forest ecosystem P nutri-

tion covering the majority of Central European forest

soils. For this purpose, an Ecosystem P Nutrition Index

(ENIP) was developed, which enabled the comparison

of forest P nutrition strategies at the carbonate sites in

our study among each other and also with those of the

silicate sites investigated by Lang et al. (2017). The P

status of forest soils on carbonate substrates was

characterized by low soil P stocks and a large fraction

of organic Ca-bound P (probably largely Ca phytate)

during early stages of pedogenesis. Soil P stocks,
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M. A. Dippold � S. Löppmann � M. Schmitt

Biogeochemie der Agrarökosysteme, Georg-August-
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particularly those in the mineral soil and of inorganic P

forms, including Al- and Fe-bound P, became more

abundant with progressing pedogenesis and accumu-

lation of carbonate rock dissolution residue. Phos-

phorus-rich impure, silicate-enriched carbonate

bedrock promoted the accumulation of dissolution

residue and supported larger soil P stocks, mainly

bound to Fe and Al minerals. In carbonate-derived

soils, only low P amounts were bioavailable during

early stages of pedogenesis, and, similar to P-poor

silicate sites, P nutrition of beech forests depended on

tight (re)cycling of P bound in forest floor soil organic

matter (SOM). In contrast to P-poor silicate sites,

where the ecosystem P nutrition strategy is direct

biotic recycling of SOM-bound organic P, recycling

during early stages of pedogenesis on carbonate sub-

strates also involves the dissolution of stable Ca-Porg

precipitates formed from phosphate released during

SOM decomposition. In contrast to silicate sites,

progressing pedogenesis and accumulation of P-en-

riched carbonate bedrock dissolution residue at the

carbonate sites promote again P-acquiring mecha-

nisms for ecosystem P nutrition.

Keywords Calcareous soils � Ecosystem nutrition �
Soil P forms � Pedogenesis � Bedrock impurity � P

acquiring � P recycling

Introduction

Several recent studies (e.g. Prietzel and Stetter 2010;

Talkner et al. 2015; Jonard et al. 2015; Prietzel et al.

2020) reported increasing phosphorus (P) limitation of

European forests. These trends highlight the need for

improved understanding of ecosystem P nutrition

strategies to support the development of P-sustainable

forest management. For forests on siliceous substrates,

Lang et al. (2016) proposed the concept of ecosystems

acquiring P on sites with sufficient lithogenic P

sources (apatite) vs. P-recycling ecosystems charac-

terized by P bound to soil organic matter (SOM) at

sites with little lithogenic P in the rooting zone. The

usefulness of the approach was highlighted by Lang

et al. (2017), who identified parameters allowing for

rating the relative contribution of the two strategies for

P nutrition in temperate forest ecosystems on silicate

parent material. Phosphorus-acquiring ecosystems had

larger soil P stocks and accumulated moderately labile

P in topsoil horizons. With decreasing soil P stocks

and increasing relevance of ecosystem P recycling,

forest floor turnover rates decreased, while C/P ratios

in the Oa and A horizons increased. Moreover, P in

fine-root biomass increased relative to microbial-

bound P. High proportions of fine-root biomass in

forest floors seemed to favor tight P recycling. Intense

P recycling improved the P use efficiency of beech

forests on silicate parent material.

Forests on soils formed from carbonate bedrock

often feature pronounced P limitation. This is partic-

ularly true where the parent material is low in P

(Porder and Ramachandran 2013), and where soils are

at an early stage of pedogenesis (e.g. Rendzic

Leptosols) with pH values[ 6.5 and carbonate in

the entire profile (Baier et al. 2006; Prietzel and

Ammer 2008; Prietzel et al. 2015). Current assump-

tions on reasons for the poor P nutrition of forests on

carbonate sites follow several lines of argument. Soil P

W. Klysubun

Synchrotron Light Research Institute, 111 Moo 6

University Avenue, Muang District,

Nakhon Ratchasima 30000, Thailand
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contents are generally smaller in shallow, stony

Rendzic Leptosols than in most soils developed from

silicate parent material (Schubert 2002; Prietzel et al.

2015). Furthermore, orthophosphate (oPO4) released

by chemical weathering of lithogenic carbonate-

entrapped apatite [Ca5(OH)(PO4)3] immediately re-

precipitates most often as sparsely soluble secondary

Ca-PO4 minerals (Hinsinger 2001) and/or is strongly

adsorbed to carbonate mineral surfaces (Wan et al.

2016). In principle, when access to inorganic P is

limited, enzymatic cleavage of SOM-bound organic P

(Porg) is an important process of plant P acquisition

(Hinsinger 2001), also known for N (e.g. Turner et al.

2014). However, even though P mineralization rates

are potentially high at elevated pH values, there is

increasing evidence (McKercher and Anderson 1989;

Celi et al. 2000; Crea et al. 2006; Celi and Barberis

2007; Wan et al. 2016; Prietzel et al. 2016a) that not

only oPO4, but also several dissolved organic P (DOP)

forms like inositol P strongly bind to the abundant

Ca2? ions in the soil solution, soil matrix, and bedrock.

Overall, sparsely soluble und thus poorly bioavailable

Ca-bound organic P (e.g. Ca inositol phosphates [‘‘Ca

phytate’’] and inositol phosphates adsorbed to carbon-

ate rock surfaces, Celi et al. 2000) are major P forms in

temperate carbonate forest soils (Prietzel et al. 2016b).

Walker and Syers (1976) developed a fundamental

concept how stocks of total P and different P forms in

soils systematically change with pedogenesis, affect-

ing ecosystem P supply. According to this concept, P

from bedrock-bound primary minerals (mostly apa-

tite) is transformed into Porg and P bound to secondary

minerals at initial stages of pedogenesis. This trans-

formation is associated with continuous soil and

ecosystem P losses. With progressing pedogenesis

and ecosystem maturation, P mobilization from

primary minerals in the rooted zone of soils is

becoming increasingly irrelevant and replaced by

transformation of the remaining soil P into hardly-

bioavailable organic and/or secondary mineral-bound

soil P forms. During this process, the native ecosystem

slowly changes from N to P limitation. The concept

originally had been developed for temperate-humid

soils on silicate substrate in New Zealand. Later, it has

been proven true also for silicate soils under cool-

humid (e.g. Giguet-Covex et al. 2013; Prietzel et al.

2013), semiarid (Selmants and Hart 2010), and

subtropical climate (Chen et al. 2015). Furthermore,

it has been modified for soils subject to high aeolic P

input (Heindel et al. 2017; Gu et al. 2019), and for soils

under cold polar climate (Prietzel et al. 2019).

According to these studies, depending on site condi-

tions, the time of change in soil P forms as predicted by

the Walker and Syers (1976) model may vary between

only decades for forests under temperate moist climate

(Prietzel et al. 2013; Turner et al. 2013) up to several

million years for grasslands under semi-arid climate

(Selmants and Hart 2010). However, so far, no study

on pedogenesis effects on the P status of soils derived

from carbonate parent material has been published,

and it remains unclear whether the concept of Walker

and Syers (1976) is also valid for carbonate soils. In

this study, we investigated forest soils developed from

carbonate parent material using the same set of

variables as in the study on silicate soils by Lang

et al. (2017). We assume that (1) the poor P status of

forests on carbonate parent material is at least partly

caused by the small P stocks and/or peculiar P

speciation of their soils (Prietzel et al. 2015; 2016b),

and that (2) in contrast to initial silicate soils (Crews

et al. 1995; Wardle et al. 2004), initial carbonate soils

often show particularly poor P supply (Ewald, 2000;

Prietzel and Ammer, 2008; Prietzel et al. 2015). Based

on the overall assumption that the P nutrition strategy

of beech forest ecosystems is controled by the P supply

of soils, we further assume that (3) the concept for

P-acquiring and recycling and the indicators can also

be applied to soils developing from carbonate parent

material. We thus addressed the following hypotheses:

• The concept of Walker and Syers (1976) describ-

ing changes of soil P stocks and P forms with

progressing pedogenesis is also valid for soils

formed on carbonate parent material.

• Temperate forest soils formed from carbonate

substrate differ from those formed from silicate

parent material in terms of stocks and P speciation:

The soils from carbonate bedrock are characterized

by generally smaller total P stocks, and predom-

inance of sparsely soluble Ca-bound organic P,

resulting in poor ecosystem P availability and high

relevance of soil Porg turnover for ecosystem P

nutrition.

• The concept of P-acquiring vs. P-recycling ecosys-

tems developed for temperate forests at silicate

sites by Lang et al. (2016; 2017) is also applicable

for carbonate sites.
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Materials and methods

Study sites

The study was conducted at four sites with European

beech (Fagus sylvatica L.)-dominated forests on soils

developed from different carbonate parent materials

(dolostone, limestone) and different stages of pedo-

genesis. Site Mangfallgebirge (MAN; 47�36’N,

11�49’E) is located in the German Limestone Alps.

It consists of two beech-dominated mixed mountain

forest (F. sylvatica, Picea abies, Abies alba, Acer

pseudoplatanus) stands, one covering the N-exposed

and one the opposing S-exposed slope of the Lange Au

valley. The parent material of soil formation is

dolostone. Site Tuttlingen (TUT; 47�59’N, 8�45’E) is

located in the Swabian Alb (SW Germany). It consists

of two mature beech forest stands, one covering the

NE-exposed and one the opposing SW-exposed slope

of the Krähenbach valley. The parent material of soil

formation is limestone. At MAN (Biermayer and

Rehfuess 1985) and also at TUT, pedogenesis started

after the end of the last glaciation, i.e. about

12,000 years ago; pre-Pleistocene soils had been

removed by periglacial solifluction. The third site

Bärenthal (BAE; 48�4’N, 8�55’E) is located on a

plateau in the Swabian Alb at 16 km distance to TUT.

It consists of a mature beech forest with admixed A.

pseudoplatanus, A. alba, and P. abies. The parent

material is also limestone. The flat topography has

resulted in conservation of soil material formed by

intensive chemical weathering during the Neogene

(Stahr and Böcker 2014). The soils at TUT SW

(shallow Rendzic Leptosol), TUT NE (Rendzic Lep-

tosol with more advanced pedogenesis and a BA

horizon), and BAE (Cambisol with thick B horizon)

are located within 16 km distance from each other.

They have similar parent material, climate, and forest

vegetation (Table 1), but represent a series of

progressing pedogenesis. The fourth site is Schänis

(SCH; 47�09’N; 9�02’E; start of pedogenesis also

about 12,000 years ago), located in the Swiss Alps in

Canton St. Gallen at a W-exposed slope. It is covered

by mature mountain forest dominated by F. sylvatica.

The climatic conditions are more humid and cool than

at TUT, but drier and warmer than at MAN. The

bedrock at SCH are Neogene sediments and carbonate

conglomerate. Detailed information on all study sites,

their soils, and bedrock chemistry is presented in

Tables 1, 2 and Table S1 in the Supplementary

Information. Note that despite high carbonate contents

in bedrock (Table S1), in the weathered soil A

horizons the contents of Al and Fe exceeded those of

Mg and Ca, pointing to clays and oxyhydroxides as

bonding sites for P apart from cation bridges. Briefly,

all sites had carbonate parent material, but differed in

(i) carbonate type and purity (dolostone at MAN,

limestone at TUT and BAE, mixture of limestone and

silicate parent material at SCH), (ii) time of pedoge-

nesis (limestone site TUT\\BAE), microclimate (N-

exposed sites at MAN and TUT were cooler and

moister than their S-exposed counterparts), and bed-

rock P content (TUT SW\ TUT NE).

Methods

We tested our hypotheses by investigating the car-

bonate-derived soils applying the exactly same meth-

ods of sampling, pretreatment, and analysis as used

before by Lang et al. (2017) and Prietzel et al. (2016b:

XANES studies) for the silicate-derived soils. We

(i) characterized the carbonate-derived soils regarding

contents and stocks of total P and different P forms.

Moreover, we (ii) compared their P status with that of

silicate-derived soils under similar climate and vege-

tation cover. Furthermore, we (iii) assessed the P

nutrition strategy of the forest ecosystems on the

carbonate sites.

Soil sampling and pretreatment

For all soil analyses except microbial biomass and

enzyme analysis (see below), we used soil samples

derived from volume-based sampling of a complete

soil profile performed over an area of 0.25–0.56 m2,

down to the consolidated bedrock or 100 cm depth,

whichever was reached first. Due to the high stone

content of all soils except of BAE, we used the

‘‘quantitative soil pit’’ (QP) approach developed by

Hamburg (1984) as modified by Vadeboncoeur et al.

(2012). By analyzing a soil volume with a large cross

section representing a large portion of the rooting

space of an adult tree, QP sampling provides a more

coherent representation of the system than analysis of

several small soil volumes. We established four pits at

MAN, two pits at TUT, and one pit at SCH. Details of

the QP approach and our soil sampling procedure are

reported in the Supplementary Information. At BAE,
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ä
re
n
th
a
l,

an
d
S
ch
ä
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soil material for chemical analyses was sampled from

the face of a profile. Bulk density and coarse fragment

data were taken from Stahr and Böcker (2014). For

microbiological and enzyme analyses, we sampled

Oe, Oa, and Ah material at representative locations

at\ 1 m distance of the QPs. All microbiological and

enzyme samples were frozen immediately after sam-

pling with solid CO2 (‘‘dry ice’’) and kept frozen until

analysis.

Determination of total element contents

Total contents of P, K, Ca, Mg, K, Na, Al, Fe, Mn, and

Ti in all soil samples were analyzed by digestion of

fine-ground subsamples with a mixture of concen-

trated HClO4/HNO3/HF (Jackson 1958; Lim and

Jackson 1982) and analysis by inductively coupled

plasma-optical emission spectrometry ICP-OES (Var-

ian Vista-Pro CCD).

Determination of different soil P forms

Wet-chemical determination of organic, inorganic,

and plant-available P

We analyzed organic P (Porg) by extracting sieved soil

samples with 0.5 M H2SO4 before and after ignition at

550 �C (Saunders and Williams 1955). Organic P was

calculated as difference of orthophosphate (oPO4)

determined in extracts from ignited and respective

non-ignited subsamples, using the malachite green

colorimetric method (Ohno and Zibilske 1991).

Uncertainties related to this approach are discussed

in Lang et al. (2017). Plant-available P was extracted

from sieved soil samples with 0.5 M NaHCO3

adjusted to pH 8.5 with NaOH (Olsen et al. 1954).

Orthophosphate-P in the NaHCO3 extracts was ana-

lyzed photometrically, using the ascorbic acid method

of Murphy and Riley (1962) as modified by John

(1970), and total P in the extracts was analyzed by

ICP-OES. The difference between oPO4-P and total P

was assumed to be organic P.

P K-edge XANES spectroscopy

On fine-ground mineral soil samples, we acquired P

K-edge X-ray absorption near-edge spectroscopy

(XANES) spectra at beamline 8 of the Synchrotron

Light Research Institute (SLRI) in Nakhon

Ratchasima, Thailand (Klysubun et al. 2012; 2019).

The instrument is equipped with a InSb(111) double-

crystal monochromator (energy resolution DE/E:

3*10–4), which was calibrated with elemental P

(E0 = 2145.5 eV). We recorded all spectra in fluores-

cence mode with a 13-element Ge detector. For each

sample, depending on its P content, we acquired

between two and five spectra. The spectra were

deconvoluted for quantification of different soil P

species by linear combination fitting (LCF) according

to Werner and Prietzel (2015). For LCF, we used

spectra of the reference compounds FePO4, AlPO4,

hydroxy apatite, CaHPO4, phytic acid Na salt hydrate

(IHP), Ca phytate, Fe(III) phytate, oPO4 as well as IHP

adsorbed to boehmite, ferrihydrite, and Al-saturated

montmorillonite (Prietzel et al. 2016a). All standards

were diluted with fine-ground quartz to 2 mg P g-1 to

avoid self-absorption. Phosphorus speciation

shares\ 5% of total P were excluded from the result

list, and LCF was repeated without the respective

standard. To improve LCF accuracy and precision, we

used the averages of the five ‘‘best’’ results with the

smallest R factors according to Eriksson et al. (2015).

The K-edge XANES spectra of inorganic and organic

P adsorbed to the same mineral are very similar

(Prietzel et al. 2016a) and thus hard to quantify by LCF

(Gustafsson et al. 2020). For proper identification of

these P forms, we therefore combined the XANES P

speciation data with the results of the wet-chemical

determination of organic and inorganic P (see Sup-

plementary Information).

Hedley fractionation

We analyzed sieved soil samples using the sequential

extraction method of Hedley et al. (1982) as modified

by Tiessen and Moir (1993). For each sample, we

extracted 0.5 g soil with solutions of increasing P

mobilization strength. We started with deionized

water containing an anion exchange resin (Dowex

18, 20–50 mesh, Sigma-Aldrich, Taufkirchen, Ger-

many). This was followed by extractions with 0.5 M

NaHCO3, 0.1 M NaOH, 1 M HCl, concentrated HCl

(7 M), and a final digestion with 65% HNO3/37% HCl

(aqua regia). Orthophosphate concentrations in the

extracts were determined according to Murphy and

Riley (1962). Fractions were combined to estimate the

following P pools (Niederberger et al. 2019): Labile P:

P extractable by resin or NaHCO3; Moderately labile

123

46 Biogeochemistry (2022) 158:39–72



P: P extractable by NaOH or 1 M HCl; Stable P: P

mobilized by HCl (conc.) or aqua regia digestion.

31P NMR spectroscopy

The speciation of organic P in the Ah horizons of soils

MAN and TUT was analyzed by 31P-NMR spec-

troscopy of soil NaOH-EDTA extracts. The method

and key results have already been described by Wang

et al. (2020). Briefly, we extracted the samples with

0.25 M NaOH plus 0.05 M Na2-EDTA (1:1 v/v)

according to Cade-Menun (2005). Then we cen-

trifuged the samples (1500 9 g, 20 min), and split

the supernatant into two equal portions. One portion

was lyophilized directly (Thermo Freeze Dryer, Heto

PowerDry PL6000). The second portion was dialyzed

(molecular weight cutoff: 14,000; thickness:

0.041 mm; Visking, Cellulose, Roth, (Sumann et al.

1998; Amelung et al. 2001). Subsequent sample

preparation for NMR spectroscopy included resolving

the freeze-dried extracts in 1 ml aqua dest. and

additionally 0.5 ml D2O and 10 M NaOH in order to

increase and standardize the pH for optimal peak

separation (Crouse et al. 2000). Then we centrifuged

all samples (1500 9 g, 20 min) und decanted the

supernatants into NMR tubes. For spectra acquisition,

we used a Varian 600 MHz spectrometer equipped

with a 5 mm broadband probe tuned to the 31P

nucleus. Other parameters were listed as: 45� pulse

calibrated at 6.0 ls, 0.4 s acquisition time, 5 s total

relaxation delay, 15,800 scans, proton inverse-gated

decoupling, and a temperature of 293.15 K. Chemical

shifts of signals were measured in parts per million

(ppm) relative to 85% H3PO4. For each sample, we

acquired approximately 25,000 scans. All spectra were

recorded with a line broadening of 3.0 Hz. Terminol-

ogy and interpretation of the spectra followed Cade-

Menun (2005; 2015), Bol et al. (2006), and Vincent

et al. (2013). We analyzed the spectra as described by

Turner (2004).

Determination of microbial P

Microbial biomass P (Pmic) was determined on

selected samples of MAN N1, TUT NW, and SCH in

triplicate using anion-exchange resin membranes by

simultaneous liquid fumigation and extraction (Kouno

et al. 1995) with hexanol instead of liquid chloroform

(Bünemann et al. 2004). Four gram of field-moist soil

were shaken together with resin and distilled water

either with hexanol or without, subsequently eluting

the resin with 0.1 M NaCl/HCl. The P concentration in

the eluate was determined by the malachite green

method (Ohno and Zibilske 1991). We determined

Pmic according to Bünemann et al. (2016) using Eq. 1:

Pmic ¼ ðPfum � PresinÞ
�
Prec ð1Þ

where Pfum and Presin are the concentrations of P (in mg

P kg-1) extracted from fumigated and non-fumigated

subsamples, respectively, and Prec is the fraction of the

added P spike that is recovered on the resin mem-

branes, which is calculated following Eq. 2:

Prec ¼ ðPspike � PresinÞ
�
P�

spike
ð2Þ

where Pspike is the P concentration measured in the

P-spiked subsample and P*spike is the amount of P

added with the spike (both in mg P kg-1). In

accordance with Bünemann et al. (2016) we present

Pmic without the use of a conversion factor which

could account for incomplete extraction of microbial P

since this factor is method- and soil-dependent

(Oberson and Joner 2005) but was not determined in

our study.

Assessment of bacterial and fungal biomass

The relative contribution of bacterial and fungal

biomass to total microbial biomass in Oe, Oa, and

Ah horizons of the study soils was estimated by

phospholipid fatty acid (PLFA) analysis conducted on

field-moist samples. Fungal and bacterial PLFAs were

determined according to Bligh and Dyer (1959) with

modifications as described by White et al. (1979) and

Bardgett et al. (1996). Gram-positive bacterial bio-

mass was quantified using the fatty acids i15:0, a15:0,

i16:0, and i17:0. Gram-negative bacterial biomass was

quantified using the fatty acids cy17:0 and cy19:0. For

total bacterial PLFAs, the sum of gram-positive and

gram-negative bacterial fatty acids as well as of the

fatty acid 16:1x7 were used (Frostegård et al. 1993).

For fungal biomass (accounting for saprotrophic fungi

and ectomycorrhizal biomass) the fatty acid 18:2x6

was used (Federle et al. 1986).
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Determination of acid phosphomonoesterase

and phosphodiesterase activities

Acid phosphomonoesterase (EC 3.1.3.2) activity was

determined using a modified disodium phenylphos-

phate method. Briefly, each soil sample (field-moist,

stored at –20 �C and sieved) was split into three

subsamples and two controls of 1 g each. Soil

suspensions were prepared with 10 ml acetate buffer

(pH 5) and 5 ml 20 mM disodium phenylphosphate

(EC 3279–54-7) as substrate solution; in controls,

substrate solution was replaced by deionized water.

All suspensions were incubated at 37 �C and contin-

uous shaking (100 rpm) for 3 h. The release of phenol

was determined colorimetrically at 614 nm (ELx808,

Absorbance Microplate Reader, BioTek Instruments,

Winooski, VT, USA), using 2,6-dibromquinone-chlo-

rimide (EC 202–937-2) as coloring reagent (Hoffmann

1968, modified by Öhlinger 1996). Phosphodiesterase

activity (EC 3.1.4.1) was measured using bis(p-

nitrophenyl) phosphate (EC 223–739-2) as substrate

and bis(hydroxymethyl) aminomethane as the p-

nitrophenol color reagent according to a modified

procedure of Margesin (1996). Each fresh soil sample

was split into three subsamples and two controls of

each 1 g. Soil suspensions were prepared with 4 ml

0.05 M Tris(THAM) buffer (pH 8.0) and 1 ml 5 mM

substrate solution. In controls, substrate solution was

replaced by deionized water. Soil suspensions were

incubated at 37 �C for 1 h at continuous shaking

(100 rpm). After incubation, 1 ml 0.5 M NaCl solu-

tion and 4 ml 0.1 M Tris(THAM) buffer (pH 12.0)

were added to each subsample, whereas the controls

received additionally 1 ml of the substrate solution.

Soil suspensions were filtered and pipetted into

96-well microplate (PS F transparent 96 well; Greiner

Bio-one, Frickenhausen, Germany). The enzyme

activity was measured photometrically at 405 nm on

a micro-plate reader (ELx808, BioTek Instruments,

Winooski, VT, USA).

Isotopic exchange kinetics

For determination of isotopic exchange kinetics (IEK),

we added a given amount of H3
33PO4 to a pre-

equilibrated (i.e. steady-state conditions for P)

soil:water (100 ml:10 g) suspension and measured

the decrease of radioactivity in the solution over time.

At the end of the experiment (after 90 min), we

determined water extractable P (Pw) after filtration of

the soil solution (0.2 lm) using the malachite green

method (Ohno and Zibilske 1991). The decrease in

solution concentration of the initially added 33P can be

described by Eq. 3 (Fardeau 1993)

rt=R ¼ m� t þ m1=n
� ��n

þr1=R ð3Þ

where rt and r? (MBq) are the radioactivity remaining

in solution after t min and after an infinite time of

isotopic exchange, respectively. R (MBq) is the

initially added radioactivity, t (min) is the time

elapsed after radioactivity addition, and m and n are

soil-specific parameters calculated from a non-linear

regression between rt/R and t after Frossard and Sinaj

(1997). The r?/R value is estimated as the ratio of

water extractable P to total inorganic P (both in mg P

kg-1). As described by Fardeau (1993), the amount of

isotopically exchangeable P (Et, in mg P kg-1 soil) is

calculated using Eq. 4 as described by Fardeau (1993):

Et ¼ Pw � ðR=rtÞ ð4Þ

We calculated the following variables: m, n, Pw and

the amounts of P isotopically exchangeable within

1 min (E1min, mg P kg-1 soil), between 1 min and

1 day (E1min–1 day), between 1 day and 3 months

(E1day–3 months). Additionally, we calculated the

amount of P that cannot be exchanged within

3 months (E[3 months) by taking the difference

between total inorganic P obtained by extraction

following Saunders and Williams (1955) and E3months.

Other soil variables with relevance for the soil P status

Contents of total soil carbon (C) and nitrogen (N) were

determined on dried (105 �C), sieved (2 mm), and

fine-ground samples using an elemental analyzer

(Vario EL cube, Elementar, Hanau, Germany). On

subsamples, inorganic C (carbonate) contents were

determined by excess addition of 4 M HCl and

quantification of the released CO2 using a calcimeter

(Eijkelkamp, Giesbeek, The Netherlands). The pH of

air-dried, sieved samples was determined in deionized

water and in 1 M KCl at soil:solution ratios of 1:2.5

(w/v). Cation exchange capacity (CEC) and exchange-

able cations were determined using NH4 acetate at pH

7 and KCl (Hendershot et al. 2008). Concentrations of

extracted Ca, Mg, K, and Na were analyzed by ICP-

OES (Ultima 2, Horiba Jobin–Yvon, Longjumeau,
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France). NH4
? in the KCl extracts was determined

using an automated photometer (SANplus, Skalar

Analytical, Breda, The Netherlands). The difference

between the CEC and the sum of Ca, Mg, K, and Na is

an estimate of H? and Al3? occupation of the CEC.

We applied the hot dithionite–citrate–bicarbonate

extraction method of Mehra and Jackson (1960) to

estimate total pedogenic Fe oxyhydroxides (Fed).

Extraction with NH4 oxalate at pH 3.0 and 2 h shaking

in the dark (Schwertmann 1964) was carried out to

estimate Al and Fe in organic complexes and short

range-ordered (SRO) minerals (Alo; Feo). Concentra-

tions of extracted Al and Fe were analyzed by ICP-

OES. Soil microbial biomass C and N (Cmic; Nmic)

were determined using the chloroform fumigation

extraction (CFE) method (Brookes et al. 1985; Vance

et al. 1987). Non-fumigated, moist soil (7 g) was

extracted with 30 ml 0.05 M K2SO4 for 1 h (Bruul-

sema and Duxbury 1996) by overhead shaking (40 rev

min-1). A similar amount of soil was fumigated with

ethanol-free chloroform and extracted in the same

way. The fumigation was carried out in desiccators at

20 �C for 24 h. The organic C content of the extracts

was measured using a CN analyzer (2100 S, Analytik

Jena). Microbial biomass C and N were calculated by

dividing the microbial C or N flush (EC; EN); the

difference between extracted C or N from fumigated

and non-fumigated soil samples with kEC or kEN factor

of 0.45 (Wu et al. 1990).

Conversion of element and P species contents into soil

stocks

Contents of various soil constituents in different soil

horizons were converted into stocks by multiplying

the content data with the surface area-standardized soil

mass of a given horizon as retrieved by the QP

approach and in the case of BAE with the data reported

by Stahr and Böcker (2014). The stock values of the

various horizons comprising a soil profile were

summed up to yield the total soil stock.

Assessment of ecosystem P nutrition strategy

The type of ecosystem P nutrition (P-acquiring vs. P-

recycling; Lang et al. 2016; 2017) was assessed for all

eight carbonate soil profiles. For each profile, we

calculated the values of the three indicators for P

acquisition and of the four indicators for P recycling

(Table 3) as described by Lang et al. (2017). Due to

limited data availability, N2 and N3 could only be

calculated for four carbonate sites, and N6 only for

two sites. To enable comparison of the different

indicators among the carbonate soils and also between

carbonate and silicate soils, we normalized the indi-

cator values obtained for each carbonate profile as in

the study of Lang et al. (2017), using Eq. 5.

Nai ¼
Iai
Iam

ð5Þ

where N represents the normalized indicator value,

the index a the indicator addressed, the index i the

study site, and I the indicator value. The index

m represents the P-richest site on silicate bedrock

(Bad Brückenau; BBR), characterized as P-acquiring

ecosystem, and the P-poorest site on silicate parent

material (Lüss; LUE) characterized as P-recycling

ecosystem. For an overall estimate of the P nutrition

strategy of each carbonate and silicate site, we first

calculated the arithmetic mean of the three P acqui-

sition indicator values obtained for the individual sites.

Then, we referenced the average P acquisition indica-

tor to the range of average P acquisition indicators of

the silicate sites. Their respective average P acquisi-

tion indicators were defined as 1 (BBR = silicate site

with maximum P supply; P-acquiring) and 0

(LUE = silicate site with minimum P supply; P

recycling; Lang et al. 2017). Accordingly, we calcu-

lated the arithmetic mean of the four P recycling

indicator values for each site, and referenced it to the

range of average P recycling indicators of silicate

sites, with that of BBR defined as 0 and that of LUE

defined as 1. Finally, an ecosystem P nutrition index

(ENIP) was calculated for each site by subtracting the

referenced mean P recycling indicator from the

referenced mean P acquisition indicator of each site.

Thus, the P nutrition strategy of each site was related

to a scale ranging from ENIP = ?1 (acquiring

endmember BBR of silicate sites) to –1 (recycling

endmember LUE of silicate sites). A positive ENIP
indicates predominance of P-acquiring over P-recy-

cling, whereas a negative ENIP indicates predomi-

nance of P-recycling over P-acquiring.
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Results

Total soil P contents and stocks

At all sites, total P contents (Table 2; Fig. 1) in the

forest floor increased with depth and degree of SOM

decomposition in the sequence Oi–Oe–Oa horizon,

whereas those in the mineral soil decreased with

depth. Total soil fine earth P stocks ranged between 90

and 350 g m-2 (Fig. 2a). The relative contribution of

P bound in coarse fragments to the total P in the

profiles ranged from 5% atMAN S1 to 42% at TUT SW.

The forest floor comprised up to 44% of total soil (fine

earth) P in the P-poor MAN profiles, whereas its

contribution was small (\ 5%) in the other soils. The

contribution of the topsoil (Ah horizons) to total soil

(fine earth) P ranged between 11 and 56%, while the

subsoil (B, C horizons) contributed between 29 and

89% to total soil (fine earth) P. In the P-rich profiles

SCH and BAE with advanced pedogenesis and thick B

horizons, subsoil P strongly dominated the soil P pool.

Contents and stocks of different soil P forms

Organic and inorganic P

In all soil horizons organic P (Porg) dominated over

inorganic P (Pinorg), and in almost all horizons Porg

comprised[ 70% of total P (Fig. 1). Organic P

contents generally decreased with increasing mineral

soil depth. In contrast, Pinorg contents often showed a

secondary maximum in the deep subsoil, but were

Table 3 Indicators for ecosystem P-acquisition and P-recycling, method of calculation of indicator values and justification of

indicator (from Lang et al. 2017)

Variable Calculation of indicator values Assumed underlying process

P acquiring indicators

N1: P-enrichment in

topsoil

P stock in the upper 50% of soil fine earth mass

divided by total soil P stock (up to 1 m)

Spatial redistribution induced by the P pumping of

trees in the long term: root uptake of P in the

subsoil, P deposition with litter at the topsoil and

adsorption after mineralization

N2: Proportion of

nonstable P in profile

Stock (up to 1 m) of non-stable P. (i.e., sum of

Hedley P minus PHCl conc and Presidual) relative to

total Hedley P

Chemical redistribution due to biological

mobilization of P from primary minerals. Nutrient

demand had been discussed as the reason for root

induced weathering

N3: Phosphate

exchangeability

between 1 min and

1 day

Concentration of isotopically exchangeable P

between 1 min and 1 day of topsoil horizons as

described in methods chapter

P exchangeability based on physicochemical

processes; indicator for P availability

P recycling indicators

N4: Accumulation of

P in forest floor

P stock in the forest floor related to total P stock (up

to 1 m mineral soil depth)

Forest floor pathways as short cut for plant P uptake

without passing of P through the fixing mineral

soil

N5: Concentration of

fine-root biomass in

forest floor

Total fine root biomass in forest floor and upper

0–5 cm mineral soil in relation to total fine root

biomass (up to 1 m mineral soil depth)

Peak concentrations of fine roots in the forest floor

have been assumed to favor tight P cycling in acid

temperate forest ecosystems. Results are clearer

when the 0–5 cm increment of the mineral soil is

added

N6: Enrichment of

diester-P

Diester-P/monoester-P ratio in the topsoil horizon as

calculated from NMR spectra

Increased proportions of diester P were observed in

acid soils and explained by changes in enzyme

activity, and decreased accessibility of diester P

for microbial decay due to accumulation within

large organic molecules

N7: Mean residence

time of forest floor

SOM

Forest floor mass related to the mass of annual litter

fall

Limited decay of soil organic matter enhances tight

P recycling by providing forest floor P-pathways

for tree nutrition
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always smaller than Porg contents. Organic soil P

stocks (Fig. 2b) ranged between 75 and 271 g m-2

and comprised between 66–70% (in Cambisols SCH

and BAE) and 90% (Rendzic Leptosol TUT SW), on

average 77% of total soil (fine earth) P. Inorganic soil

P stocks ranged between 13 and 108 g m-2 and

comprised between 10% and 30–34% (SCH and BAE),

on average 23%, of total soil P (Fig. 2b).

P speciation in mineral soil horizons assessed by P

K-edge XANES spectroscopy

According to P K-edge XANES (Fig. 1, Fig. 2c;

Table S2), Porg in the mineral soil of the dolostone-

derived soils as well as in TUT SW and SCH was

predominantly Ca-bound. On average, about 60% of

mineral soil fine earth P was Ca-bound; Fe-bound P

and Al-bound P each constituted about 20%. A

difference in soil P speciation can be noticed between

soils without B horizons (MAN N1, N2, S2; TUT SW)

and soils with B horizons (MAN S1, SCH, particularly

BAE) or impure carbonate bedrock (marl limestone at

TUT NE). The latter soils had larger Fe-bound P

stocks, which constituted the majority of fine earth P at

BAE and TUT NE.

NaHCO3-extractable P

Contents of NaHCO3-extractable P (Table S2), which is

an estimate for plant-available P, decreased in the

mineral soil with depth. Stocks of NaHCO3-ex-

tractable oPO4 (Fig. 3) ranged between 2 (MAN N1)

and 15 g m-2 (MAN S2), those of NaHCO3-ex-

tractable Porg ranged between 0.2 g m-2 (MAN N1)

and 9 g m-2 (SCH). NaHCO3-extractable P was mostly

oPO4 at MAN, to about equal shares oPO4 and Porg at

TUT, and mostly Porg at SCH.

Hedley P fractions

In almost all mineral soil samples, the majority of soil

P could only be mobilized by treatment with concen-

trated HCl or aqua regia (Fig. 4; Table S3), and thus

was in the stable fraction according to Niederberger

et al. (2019). The contribution of stable P to total P

increased with soil depth, whereas the contribution of

labile P (resin-P, NaHCO3-extractable P fractions)

decreased. Except for the subsoil at SCH,\ 10% of

soil P was moderately labile. Mineral soil stocks of

stable P increased with soil development and were

larger in limestone-derived than in dolostone-derived

soils (Fig. 5). The contribution of labile P to total P

decreased with progressing pedogenesis.

P speciation in Ah horizons by 31P NMR spectroscopy

Contents of NaOH-EDTA-extractable P at MAN N1

and TUT NE were about 300 (L horizons), 500 (O,

Ah), and 200 (CAh) mg g-1 soil (Fig. 6; Wang et al.

2020). Extraction recoveries as related to total P

contents of the respective horizons (shaded bars in

Fig. 6) decreased with soil depth from 80–100% in L

layers to 50–60% in O and Ah and 25% in CAh

horizons. With 35–70% of extractable P, monoester P

was the dominating P form. Its contribution to total

extractable P increased with depth. Between 1 and

11% of extractable P was phosphodiester P bound in

DNA, and between 1 and 9% was lipid phosphodiester

P. Orthophosphate constituted about 25% of

extractable P, and about 80% of extractable Pinorg.

Between 4 and 12% of extractable P was pyrophos-

phate-P. Polyphosphate was only present in Oi layers

(7–10% of extractable P).

Microbial bound P and enzyme activities

Contents of microbial P, C, and N (Pmic, Cmic, Nmic) in

all profiles significantly decreased with depth (Fig. 7;

Figure S2, S3). In the Ah horizons, Pmic contents

increased in the sequence SCH\MAN N1\ TUT

NE. Mass ratios of Cmic/Pmic decreased in the same

order (Table 4). Phosphomonoesterase and phospho-

diesterase activities also decreased with soil depth and

on average were eight times (phosphomonoesterase)

and three times (phosphodiesterase) larger in O than

Ah horizons (Table 5). A larger decrease in phospho-

monoesterase than phosphodi-esterase activities

resulted in smaller phosphomonoesterase/phosphodi-

esterase ratios in A horizons than O layers.

Isotopic exchange kinetics

Water-extractable Pinorg contents (Pw) at MAN S1 and

S2, TUT NE, BAE, and SCH ranged from 0.003 to

2.97 lg P g-1 soil and decreased with increasing depth

(Table 6). The fitting parameter m, accounting for

immediate physicochemical reactions, followed the

same trends as Pw in TUT NE and SCH. The fitting
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parameter n, accounting for slow physicochemical

reactions, was rather constant over depth at all four

sites. The amount of P that was isotopically exchange-

able between 1 day and 3 months (E1day-3 months)

decreased with increasing depth at all four sites.

Profiles MAN S1 and S2 had largest amounts of

isotopically exchangeable P, and TUT NE (Ah) and

BAE (Bw) had largest amounts of non-isotopically

exchangeable P (E[3 months).

Ecosystem P nutrition indicators and ecosystem P

nutrition strategies

The seven indicators for P acquisition (N1–N3) and P

recycling (N4–N7) calculated according to Lang et al.

(2017) are presented in Table 7. For three of the four

MAN profiles, the P recycling indicators N4 and N7

ranged between 1.3 and 8.5 and thus markedly

exceeded the range of the silicate soils. Consequently,

negative ENIP values indicated a dominance of P

recycling over P acquisition at all dolostone sites

(Table 7). Except for Cambisol MAN S1, ENIP values

at the dolostone sites were\ –1. This indicates

pronounced P recycling, exceeding even that of the

most P-recycling silicate site LUE. Among the

carbonate sites, ENIP was highly negatively correlated

with forest floor P (and SOC) stocks, but not with total

soil P stocks (Fig. 8). The limestone sites showed a

change from predominating recycling to acquiring P

nutrition with progressing pedogenesis.

Discussion

Many analytical methods applied in our study (e.g.

NMR and XANES spectroscopy, Hedley P fraction-

ation, determination of isotopic exchange kinetics) are

costly and/or time demanding, preventing the analysis

of replicate profiles at each study site. Therefore, our

paper unfortunately does not allow for statistical

analysis of soil P status differences among the various

sites. Nevertheless, we think that our paper presents a

lot of novel important information on the P status of

soils with carbonate parent material, regarding effects

of pedogenesis, bedrock carbonate purity, and differ-

ences to soils with silicate parent materials.

Changes of P stock, P speciation, and ecosystem P

nutrition in soils on carbonate bedrock

with progressing pedogenesis

Soils TUT SW (shallow Rendzic Leptosol), TUT NE

(Rendzic Leptosol with more advanced pedogenesis

and a BA horizon), and BAE (Cambisol with thick B

horizon) are located within 16 km distance from each

other. They have similar parent material, climate, and

forest vegetation (Table 1), but represent a series of

progressing pedogenesis. Whereas the two Leptosols

have developed after the last Pleistocene glaciation,

and their age is\ 12,000 years, Cambisol BAE is pre-

Pleistocene and has an age of at least 2.5 Ma (Stahr

and Böcker 2014). This sequence provides novel

information on changes in P stock and P speciation in

carbonate soils with pedogenesis. In contrast to the

chronosequences on silicate parent material studied by

Walker and Syers (1976), the limestone soils showed

increasing fine earth P stocks (Fig. 9) with increasing

soil age and progressing pedogenesis (shallow

Rendzic Leptosol Cambisol). The increase in fine

earth P stock was mostly caused by an increase in soil

depth, formation of subsoil horizons, and fine earth

0
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Fig. 3 Plant-available soil P stocks (NaHCO3-extractable P) at

temperate beech forest sites with carbonate parent material.

Shown are absolute and relative contributions of organic P

(black bars) and inorganic P (white bars). For a detailed

description of sites, please read caption of Fig. 2
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Fig. 4 Contents (left

panels; mg P kg-1) and

relative contribution (right

panels) of different Hedley P

fractions (labile P:

resin ? NaHCO3-

extractable P; moderately

labile P: NaOH-

extractable ? 1 M HCl-

extractable P; stable P: 7 M

HCl-extractable ? aqua
regia-extractable P) in

different mineral soil

horizons of profiles

Mangfallgebirge N1 and S1,

Tuttlingen NE, Schänis, and

Bärenthal
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(i.e. insoluble limestone dissolution residue ? SOM)

accumulation (Fig. 1). Stocks of P bound in stones and

grit within the profile were decreasing faster with

progressing pedogenesis than fine earth P stocks were

increasing, indicating overall ecosystem P losses

during pedogenesis also on carbonate sites, as shown

before for silicate sites (Walker and Syers 1976;

Lajtha and Schlesinger 1988; Crews et al. 1995; Chen

et al. 2015). In line with the concept of Walker and

Syers (1976), stocks of lithogenic Ca-bound P and the

relative contribution of Ca-bound P to total soil P

decreased with progressing pedogenesis (Fig. 9b).

Yet, in contrast to their study, where Ca-bound P

was completely lost in glacier forefield moraines after

22,000 years of soil formation under cool temperate

climate, at BAE even after[ 2.5 Ma of pedogenesis

under different (humid, cold-arid, tropical) climate

regimes, limestone rock fragments and Ca-bound P
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Fig. 5 Comparison of

mineral soil stocks of

different Hedley P fractions

at temperate beech forest

sites with carbonate (left

panels) and silicate parent

material (right panels; data

from Lang et al. (2017).

Shown are absolute and

relative contributions of

different Hedley P fractions

in the investigated profiles
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Fig. 6 Phosphorus forms
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spectroscopy of soil NaOH-

EDTA extracts from O layer
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(Wang et al. 2020). Left:

Contents in mg P kg-1; bars
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extractable P
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still present in the Bw horizons at 50 cm depth (Fig. 1;

Table 1). We assume that despite its plateau position

with an inclination of only 2% BAE has lost a

considerable portion of its pre-Pleistocene topsoil by

solifluction during the Pleistocene. Forest vegetation

colonizing the site in the early Holocene therefore

C2

Pmic [mg kg-1]

Presin [mg kg-1]

Mangfall N1Tuttlingen NE
Pmic [mg kg-1]

Pmic [mg kg-1]

Presin [mg kg-1]

Presin [mg kg-1]Presin [mg kg-1]

Pmic [mg kg-1]
BärenthalSchänis

BA

C1

1

CB

Bw
BA

Bw

AB

Oe
Oe

Oa

AB

Oe Oe

Fig. 7 Soil microbial biomass phosphorus (Pmic) and

extractable P (Presin) in profiles Mangfallgebirge N1, Tuttlingen
NE, Schänis, and Bärenthal. Significant differences (p\ 0.05)

between horizons are denoted with lower-case letters. Values

below detection limit are denoted with n.d
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could access and mine the underlying limestone rock,

which was present at a depth\ 60 cm, well within the

rooting zone of forest trees, for P. At present, 15% of

total P in the Ah horizon of BAE is Ca-bound Porg (Ca-

IHP), probably indicating steady combined input of Ca

and P with litter into the acidified topsoil (Clarholm

and Skyllberg 2013).

Advancing limestone weathering, pedogenesis, and

topsoil acidification in our chronosequence resulted in

a decrease of Ca-bound soil P by dissolution of

inorganic and organic Ca phosphates as well as

accumulation of Al- and Fe-rich limestone dissolution

residue, including Al and Fe oxyhydroxides. Stocks of

Fe-bound P and their contribution to total soil P in our

limestone-derived soils reached a maximum at

Table 4 Contents of microbial C (Cmic), N (Nmic), and P

(Pmic), Cmic/Pmic and Cmic/Nmic mass ratios as well as mass

ratios of organic C (Corg) over organic P (Porg) and organic N

(Norg) in the Ah1 horizons of the carbonate profiles Mangfall-
gebirge N1, Tuttlingen NE, and Schänis

Site Method Cmic

(lg

g-1

)

Nmic

(lg

g-1

)

Pmic

(lg

g-1

)

Presin

(lg

g-1

)

Cmic/

Pmic

(g

g-1

)

Cmic/

Nmic

(g

g-1

)

Corg/

Porg soil

(g g-1 )

Corg/

Norg

soil

(g g-1 )

Pmic/Cmic

Porg/Corg

Nmic/Cmic

Norg/Corg

(Factor of enrichment
in soil microorganisms
relative to SOM)

Carbonate parent material

Mangfallgebirge
N1

Resin 2487 440 76 6 33 5.7 208 16.4 6.3 2.7

Tuttlingen NE Resin 1571 210 81 5 19 7.5 124 14.3 6.5 2.0

Schänis Resin 2955 570 58 8 51 5.2 83 10.2 1.6 2.0

Table 5 Activities of phosphomonoesterase [MONO] and phosphodiesterase [DI] as well as phosphomono-esterase/phosphodi-

esterase ratios in Oe, Oa, and Ah horizons of the profiles on carbonate parent material (mean ± standard deviation, n = 3)

Phosphomonoesterase [MONO] (pH 5.0) Phosphodiesterase [DI] (pH 8.0) MONO/DI

mg Phenol
g-1 soil 3 h-1

mg p-Nitrophenol
g-1 soil 1 h-1

Ratio

Oe horizons

Mangfallgebirge N1 124.3 ± 14.3 2.2 ± 0.2 57

Mangfallgebirge S1 37.7 ± 15.1 1.6 ± 0.1 23

Tuttlingen SW 58.8 ± 2.9 1.3 ± 0.0 45

Tuttlingen NE 28.8 ± 2.7 1.2 ± 0.3 24

Bärenthal 58.6 ± 3.3 1.3 ± 0.1 46

Schänis 48.0 ± 3.1 1.5 ± 0.1 33

Oa horizons

Mangfallgebirge N1 53.7 ± 0.9 0.76 ± 0.03 71

Mangfallgebirge S1 30.5 ± 0.04 1.3 ± 0.0 24

Ah1 horizons

Mangfallgebirge N1 8.5 ± 0.2 0.44 ± 0.00 19

Mangfallgebirge S1 8.9 ± 0.1 0.61 ± 0.01 15

Tuttlingen SW 6.5 ± 0.1 0.52 ± 0.00 12

Tuttlingen NE 5.9 ± 0.2 0.35 ± 0.01 17

Bärenthal 7.8 ± 0.0 0.24 ± 0.03 33

Schänis 4.2 ± 0.0 0.21 ± 0.01 15
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intermediate stages of pedogenesis. According to the

XANES results, in the old Cambisol BAE Al-bound P

dominated over Fe-bound P, indicating that ultimately

gibbsite and kaolinite were more important for soil P

retention and storage than goethite and hematite. Yet,

the majority of soil P in BAE was organic (Fig. 9a),

and P K-edge XANES may have erroneously identi-

fied a considerable portion of Porg bound to Fe

oxyhydroxides as Al-bound P (Prietzel and Klysubun

2018). Combination of the information retrieved by

wet-chemical digestion, XANES, and Hedley frac-

tionation (Fig. 9a-c) indicated that most of the P

termed ‘‘occluded P’’ by Walker and Syers (1976), and

‘‘stable P’’ by Hedley et al. (1982) was Al- or Fe-

bound Porg. The latter was most likely occluded in,

strongly adsorbed to, and/or co-precipitated with Al

and Fe oxyhydroxides. Overall, pedogenesis in lime-

stone soils has resulted in a long-term change from

recycling to acquiring ecosystem P nutrition (Table 7),

suggesting that the small (moderately) labile P stock

(84 g m-2) in the BAE profile is a sufficiently large

pool of ecosystem-available P for an acquiring P

nutrition strategy of the beech forest at BAE. In

summary, these results indicate that, in contrast our

hypothesis (1), the concept of Walker and Syers

(1976) is only partially valid for soils derived from

carbonate parent material (e.g. soil P speciation

change from Ca-bound P to Al- and Fe-bound P forms

with progressing pedogenesis), and must be refuted in

many aspects (decrease of total soil P, inorganic P, and

labile, plant-available P stocks with progressing

pedogenesis).

Carbonate rock purity as key factor affecting soil P

status and ecosystem P nutrition

Carbonate parent materials exist with different purity,

i.e. in addition to the dominating (Ca, Mg, [Fe, Mn])

carbonates, other elements like Al, K, Na, Ca, Mg, Fe

(in accessory silicate minerals) or Fe, Al, Mn (in

accessory oxyhydroxide minerals) may be admixed to

or co-precipitated. A well-known example is the

Table 6 Results of isotopic exchange analyses for the study

sites Mangfallgebirge, Tuttlingen, Schänis, and Bärenthal
(mean ± standard deviation, n = 3). Water extractable P (Pw)

and total inorganic P (Pi). Fitting parameters (m and n) de-

scribing the decrease of radioactivity in the solution with time,

amount of P isotopically exchangeable within 1 min (E1min),

between 1 min and 1 day (E1min-1 day), between 1 day and

3 months (E1day-3 months), and amount of P not exchangeable

within 3 months (E[3 months)

Pw

(lg P g-1 soil)

Pi

(lg P g-1

soil)

m N E1min

( lg P g-1

soil)

E1min-1 day

( lg P g-1

soil)

E1day-

3 months

( lg P g-1

soil)

E[ 3 months

( lg P g-1

soil)

Mangfallgebirge S1

Ah1 2.97 ± 0.86 134.6 0.51 ± 0.18 0.59 ± 0.03 7.5 ± 4.5 93.4 ± 11.6 30.4 ± 14.1 3.3 ± 1.9

Bk 0.19 ± 0.21 48.2 0.03 ± 0.01 0.59 ± 0.10 5.2 ± 4.5 33.8 ± 4.7 8.0 ± 7.0 1.2 ± 1.4

Mangfallgebirge S2

Ah 0.66 ± 0.29 138.9 0.17 ± 0.06 0.61 ± 0.07 4.4 ± 2.6 92.3 ± 14.5 37.9 ± 13.2 4.3 ± 3.3

AC 0.48 ± 0.13 104.9 0.23 ± 0.07 0.40 ± 0.87 2.2 ± 0.9 27.2 ± 15.7 39.0 ± 10.8 36.4 ± 24.8

Tuttlingen NE

Ah1 2.42 ± 0.22 174.8 0.35 ± 0.05 0.33 ± 0.01 6.8 ± 0.9 45.7 ± 5.7 61.0 ± 1.6 61.3 ± 8.1

BA 0.82 ± 0.13 103.8 0.19 ± 0.01 0.37 ± 0.02 4.1 ± 0.7 35.0 ± 2.9 39.9 ± 1.7 24.9 ± 3.4

C1 0.77 ± 0.03 141.9 0.16 ± 0.01 0.35 ± 0.00 4.7 ± 0.2 37.6 ± 1.1 52.5 ± 0.5 47.1 ± 1.6

Schänis

Ah1 1.13 ± 0.21 140.8 0.36 ± 0.13 0.43 ± 0.03 3.3 ± 0.7 44.0 ± 9.8 60.5 ± 2.9 33.0 ± 12.1

Ah2 0.13 ± 0.07 103.0 0.14 ± 0.05 0.46 ± 0.07 0.9 ± 0.4 20.4 ± 11.9 42.8 ± 11.4 38.9 ± 23.5

Bw1 0.09 ± 0.01 77.7 0.05 ± 0.01 0.42 ± 0.03 1.8 ± 0.2 24.3 ± 2.8 33.7 ± 1.7 18.0 ± 4.0

Bärenthal

Ah 1.14 ± 0.15 54.0 0.35 ± 0.02 0.40 ± 0.04 3.2 ± 0.4 25.1 ± 4.3 18.3 ± 1.2 7.5 ± 3.5

BA 0.05 ± 0.03 48.0 0.02 ± 0.00 0.40 ± 0.03 2.3 ± 1.3 19.6 ± 7.2 17.0 ± 3.5 9.0 ± 5.1

Bw 0.003 ± 0.000 92.0 0.01 ± 0.00 0.32 ± 0.03 0.3 ± 0.0 2.7 ± 0.4 8.5 ± 2.5 80.5 ± 2.8
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rü

ck
en

au
1

.0
0

1
.0

0
1

.0
0

0
.0

5
0

.3
1

0
.2

0
0

.1
3

1
.0

0
0

.1
7

1
.0

0
0

.0
0

1
.0

A
cq

u
ir

in
g

M
it

te
rf

el
s

0
.8

6
0

.9
4

0
.6

3
0

.2
0

0
.5

5
0

.3
3

0
.3

6
0

.8
1

0
.3

6
0

.6
5

0
.2

3
0

.4
A

cq
u

ir
in

g
[

R
ec

y
cl

in
g

V
es

se
rt

al
0

.8
0

1
.1

7
0

.2
0

0
.7

2
0

.8
5

0
.3

3
N

D
0

.7
2

0
.6

3
0

.4
9

0
.5

6
-

0
.1

A
cq

u
ir

in
g

=
R

ec
y

cl
in

g

C
o

n
v

en
tw

al
d

0
.9

2
0

.6
3

0
.2

4
0

.9
7

1
.0

9
0

.6
4

0
.9

1
0

.6
0

0
.9

0
0

.2
6

0
.8

8
-

0
.6

R
ec

y
cl

in
g
[
[

A
cq

u
ir

in
g

L
ü
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increasing share of silicate in the sequence limestone –

marl limestone – marl – marl mudstone (Blatt and

Tracy 1996). Moreover, P contents of carbonate parent

materials vary strongly on the global scale (Porder and

Ramanchandran 2013), but also on regional and local

scales (Table S1). Thus, soils formed from carbonate

parent material may exhibit low and high P contents,

respectively (Schubert 2002). Additionally, rates of

mineral weathering, accumulation of insoluble resi-

dues, and soil formation are strongly affected by

carbonate parent material purity. Profile SCH differed

from the other soils by a markedly smaller parent

material carbonate content of only 52% (Table S1)

compared to at least 95% in the other soils. Further-

more, the parent material P content at SCH with

275 lg g-1 was about twice as high as at the other

carbonate sites (140–150 lg g-1) except for TUT NE

(650 lg g-1). At SCH, rapid weathering of P- and Fe-

rich parent material resulted in formation of 80 cm

thick Bw horizons (Table 1) with large stocks of SRO
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Fig. 8 Linear regression of the Ecosystem P Nutrition Index (ENIP) vs. stocks of a,c total soil P, and b,d forest floor P in the carbonate

soils a, b and in the silicate soils investigated by Lang et al. (2017)
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Fe minerals (ferrihydrite) within only 12,000 years.

These minerals stored large Porg and Pinorg stocks

(Fig. 2) by strong adsorption, occlusion, and probably

also as stable ternary ferrihydrite–PO4–Ca complexes

(Mendez and Hiemstra 2020). This resulted in small

pools of labile P (Fig. 5), low P availability for beech

trees (foliar P content 1.13 mg g-1; Table 1) and

particularly for soil microorganisms (Cmic/Pmic ratio in

the Ah horizon: 51; Table 4). We therefore assume that

the predominating P-recycling ecosystem nutrition

strategy (ENIP = –0.4; Table 7) at SCH is largely

mediated by the O and Ah horizons. Also the

dolostone rock at the S-exposed slope at MAN (95%

carbonate) differed from that at the N-exposed slope

(99.6% carbonate) by a markedly larger contribution

of non-carbonate compounds (Table S1): Silicon and

Al contents were 100 times higher; Fe and K contents

were 30 times higher. Yet, both parent materials had

almost identical P contents. The increased portion of

non-carbonate minerals in the parent rock of the

S-exposed profiles resulted (Table 1) in elevated soil

contents of total Al, Fe, and K as well as in advanced

pedogenesis, as indicated by elevated contents of

dithionite- and oxalate-extractable Fe and Al. At MAN

S1, even a Cambisol with a B horizon has formed

within\ 12,000 years similar to a Cambisol

described by Biermayer and Rehfuess (1985) for a

forest site on dolostone rock at 14 km distance.

Moreover, and in contrast to the other dolostone sites,

P ecosystem nutrition at MAN S1 had a P-acquiring

component in addition to the dominating P-recycling

(ENIP: –0.6; other dolostone sites: ENIP:\ \ –1;

Table 7).

The parent material of profile TUT NE differs from

that of its SW-exposed counterpart, and also from the

pure ([ 95%) carbonate parent materials of the other

study sites by a more than four times larger P content

(650 instead of 150 mg P kg-1; Table 1). Conse-

quently, soil P contents (Fig. 1) and stocks (Fig. 2) in

profile TUT NE were considerably larger than in TUT

SW. The lower carbonate content in the parent rock of

TUT NE compared to TUT SW was accompanied by

three times larger Si, Al, Fe, and K contents

(Table S1). This resulted in accelerated pedogenesis,

formation of a BA horizon, and lower pH values

(Table 1) in TUT NE compared to TUT SW. These

results demonstrate the great importance of the parent

material P content for the soil P status on carbonate

sites.

Comparison of sites with carbonate vs. silicate

parent material

Soil P status (detailed version in Supplementary

Information)

(1) Soil P stocks: Total P stocks of the carbonate soils

were at the level of the P-poor soils on silicate parent

materials (Fig. 2). This can be partly attributed to the

low P content of carbonate parent materials, particu-

larly those of high purity, compared to most silicate

parent materials (Porder and Ramanchandran 2013).

Moreover, chemical weathering of carbonate parent

material proceeds much slower than silicate weather-

ing, resulting in low lithogenic P input and low soil

accumulation rates of P-retaining sesquioxides and

clay minerals. A large part of the P stock in the

carbonate forest soils was bound in forest floor SOM.

This finding emphasizes the importance of O layer

conservation for ecosystem P supply (Ewald 2000;

2005; Prietzel and Ammer 2008; Mellert and Ewald

2014). The relevance of the forest floor to soil P

storage and ecosystem P nutrition at carbonate sites

decreases with progressing pedogenesis and accumu-

lation of mineral soil material. However, in Central

Europe, the Pleistocene glaciations, with few local

exceptions, were associated with either complete

removal of pre-Pleistocene soils, followed by a reset

of pedogenesis in the Holocene, or their conversion

into mixed carbonate–silicate soils by (peri)glacial

admixing of allochthonous parent materials (e.g. loess,

till). Thus, mature soils that have formed solely by

dissolution of carbonate bedrock and accumulation of

non-carbonate residue, such as the BAE Cambisol, are

extremely rare in Central Europe.

(2) Soil P speciation: In the carbonate-derived soils,

a larger portion of total P than in the silicate-derived

soils is Ca-bound organic P (Fig. 2). This is probably

largely caused by impeded enzymatic cleavage of Ca-

Porg precipitates (mostly inositol hexaphosphate [IHP]

monoesters; Fig. 6; Turner et al. 2002; Wang et al.

2020). Consequently, diester-P/monoester-P ratios

were strongly decreased in the carbonate compared

to the silicate soils. In summary, our results generally

support hypothesis (2) that beech forest soils formed

from carbonate rocks differ from those formed from

silicate parent material regarding P stocks and P

speciation. In general, P stocks of carbonate soils are

lower than those of silicate soils, and the dominant P
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species comprise Porg-Ca associations and a high share

of monoester-P, while in silicate soils diester-P and

Porg-Fe/Al associations are of larger relevance.

(3) Plant and ecosystem P availability: Low beech

foliage P contents (Table 1) indicate poor ecosystem P

availability at all carbonate sites. Moreover, stocks of

plant-available oPO4 and Cmic/Pmic ratios in the

carbonate soils were at the level of the P-poorest

silicate soilsCON and LUE (Fig. 5, Figure S1, Table 4,

Table S5). Furthermore, phosphorus enrichment in

microbial biomass relative to SOM was much lower in

the carbonate than in the silicate soils (Table 4,

Table S5). The poor ecosystem P availability of sites

with initial carbonate soils is probably caused by

strong P incorporation in sparsely soluble Ca–Porg

precipitates. Ca-bound inositol phosphate is a hardly

available P-bearing substrate for microorganisms and

plants, resulting in P-rich SOM and large soil Porg

stocks, whereas at the same time the P supply of soil

microorganisms and trees is low.

Ecosystem P nutrition strategies of beech forests

on carbonate vs. silicate sites

Insufficient P nutrition is a critical factor for growth

and vitality of forests on carbonate soils (Ewald, 2000;

2005; Mellert and Ewald 2014). For P-poor silicate

sites, Lang et al. (2017) showed that forest ecosystems

cope with poor P supply by establishing particular

traits of intensive ecosystem-internal P recycling.

These traits include plant-internal P-reallocation, but

also P recycling within the soil system, i.e. intensifi-

cation of enzymatic P mobilization from SOM,

followed by instantaneous re-uptake of mobilized P

in the forest floor and the mineral topsoil. Our results

in general and in particular the strongly negative ENIP
indices (\ –1.3; Table 7) suggest that the Rendzic

Leptosols on dolostone at MAN were characterized by

the same soil traits as at the P-poor silicate sites, i.e.

pronounced ecosystem P recycling. The accumulation

of thick forest floor layers at MAN, associated with

large values of the P-recycling indicators N4 and N7,

was probably caused by the cold and humid site

climate (Prietzel et al. 2016c). Ecosystem P acquisi-

tion from lithogenic sources as shown for the silicate

sites MIT andCON by Uhlig et al. (2020) was probably

restricted at MAN by low parent material P contents

and weathering rates. Thus, at MAN forest floor

degradation caused by forest disintegration due to

climate warming (Prietzel et al. 2016c) or ungulate

pressure (Prietzel and Ammer 2008) results in aggra-

vated ecosystem P shortage and marked changes of

soil microorganism communities and nutrient turnover

pathways.

To date, ecosystem P nutrition data for forests on

initial carbonate soils are lacking. We assume that,

similar to silicate sites (Giguet-Covex et al. 2013;

Prietzel et al. 2013), also the continuously recycling

ecosystem P stock in Rendzic Leptosols had been

acquired from lithogenic sources, i.e. by chemical rock

weathering, and atmospheric sources, such as mineral

dust (Küfmann 2006) and SOM (Zöttl 1965) during

initial soil formation and ecosystem succession imme-

diately after deglaciation in the early Holocene. In this

context, it is important that hyphae of mycorrhiza and

other fungi, but also free soil microorganisms directly

access and mine stones and rocks for P (Hinsinger

2001; Stock et al. 2021; Pastore et al. 2022). However,

as described in Sect. Soil P status (detailed version in

Supplementary Information), soil P input rates by

chemical and biological mineral weathering at sites on

P-poor carbonate parent material probably are much

lower than those at sites on silicate parent material

with higher P contents. Thus, it can be assumed that

forest ecosystems on initial carbonate soils (similar to

those developing on P-poor, quartz-rich silicate parent

material) shift from a P-acquiring into a P-recycling

nutrition strategy as soon as reasonable amounts of

P-containing SOM have been accumulated. In con-

trast, forests on P-rich silicate parent material may rely

for longer time on the P-acquiring nutrition strategy.

The systematic change from a predominantly P-ac-

quiring to a predominantly P-recycling nutrition

strategy along the geosequence BBR (ENIP: 1.0) /

MIT (0.4) / VES (–0.1) / CON (–0.6) / LUE (–1.0)

(Table 7) with decreasing substrate P content (Lang

et al., 2017) and soil P stocks (Fig. 8c) may reflect a

snapshot taken 12,000 years after onset of soil

formation and forest ecosystem succession (Fig. 10).

The transformation from initially P-acquiring to

ultimately P-recycling nutrition depicted in Fig. 10

is probably caused by accumulation of P-bearing SOM

in the forest floor and the mineral topsoil and

concomitant gradual replacement of bedrock by

P-depleted silicate weathering products (the non-

SOM mineral soil fraction) during pedogenesis. Fine

earth P contents in the Bw horizons of the profiles

BBR, MIT, VES, CON, and LUE 12,000 years after
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onset of pedogenesis were 2.0, 0.9, 1.0, 0.4, and

0.2 mg P g-1, respectively (Lang et al. 2017), which is

only 71%, (exception MIT 141%), 43%, 48%, and

50% of the P contents in the respective parent

materials (Table S1). The P depletion of the silicate

subsoils was probably mainly caused by root P uptake,

i.e. the initially dominating P-acquiring ecosystem

nutrition at all silicate sites.

According to their markedly negative ENIPs,

ecosystem P nutrition at all dolostone sites and the

limestone site TUT NE was dominated by P recycling

rather than P acquisition, and a high relevance of soil

Porg turnover for ecosystem P nutrition, similar to the

P-poor silicate sites CON and LUE, thus supporting

hypothesis (2). Yet, we assume that the major

pathways of P recycling differ between silicate and

carbonate soils at early stages of pedogenesis. At

P-poor silicate sites, the prevailing ecosystem P

nutrition strategy is characterized by direct biotic

recycling of SOM-bound Porg, which probably is

mainly exerted via enzymatic cleavage of SOM-PO4

bonds and subsequent uptake of the released oPO4 by

plant roots, mycorrhiza fungi, and soil microorgan-

isms. In contrast, recycling pathways of SOM-bound P

in carbonate soils at early stages of pedogenesis have

to include the dissolution of stable Ca-Porg (mostly Ca-

IHP) precipitates and/or mobilization of calcite-ad-

sorbed IHP (Celi et al. 2000) that had been formed

from IHP released during SOM decomposition. Likely

because of the continuous re-supply of Ca2? from

weathering rock, and unlike at the silicate sites, Ca-

Porg compounds accumulate and constitute the major-

ity of soil P in carbonate soils with an early stage of

pedogenesis (Fig. 2). The forest ecosystems on the

Cambisols MAN S1 and SCH according to our results

were also characterized by a predominantly recycling

P nutrition strategy. However, ENIPs of –0.6 and –0.4,

respectively (Table 7) indicate that P-acquiring pro-

cesses, including microbial (Pastore et al. 2022) and

plant uptake of rock and subsoil P at these sites to some

extent contribute to ecosystem P nutrition, similar to

the silicate site CON (ENIP –0.6; Table 7; Rodionov

et al. 2020; Uhlig et al. 2020). It thus can be assumed,

in a quantitative sense, that ecosystem P acquisition

from lithogenic sources by plants and microorganisms

is less effective in soils on P-poor carbonate bedrock

(e.g. MAN; rock P content 150 mg kg-1) compared to

most soils on silicate parent materials, which are richer

in P (Table S1).

Intriguingly, site BAE with the oldest, pedogenet-

ically most advanced soil in our study (Cambisol with

an age[ 2.5 Ma) showed the most positiveENIP (0.9)

of all carbonate sites, indicating a predominating

P-acquiring ecosystem nutrition strategy. In contrast

to silicate sites, forest ecosystem P nutrition on sites

with carbonate rock with progressing pedogenesis

does obviously not shift systematically from an initial

P-acquiring to a P-recycling strategy. Instead, it seems

to reverse to a P-acquiring strategy in the ‘‘Cambisol

phase’’ after a dominating P-recycling strategy in the

previous ‘‘Rendzic Leptosol phase’’. Of course, the

representativeness of our result obtained for BAE has

to be tested by future investigation of other old

Cambisols formed from carbonate rock. Yet, the

proposed ecosystem reversal from a predominantly

P-recycling to a predominantly P-acquiring nutrition

strategy on Cambisols formed from carbonate parent

material, which is absent for Cambisols formed from

silicate parent material, can be reasonably explained

by the different processes responsible for Bw horizon

formation in the respective Cambisols. As reported

above, at silicate sites, a key pedogenetic process in

the formation of Cambisols with Bw horizons is

gradual replacement of P-rich silicate rock material by

P-poorer silicate weathering products (Fig. 11, lower

panels). This P depletion is probably mainly caused by

selective apatite dissolution and P mining by soil

microorganisms, mycorrhiza fungi, and plant roots,

followed by biological P uplift, incorporation of the

mobilized P in biomass including partial P removal

from the soil, P enrichment and P recycling in the Ah

Silicate

soils

12,000 yr-4
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1
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I P

Soil Age
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Acquiring

Recycling

?

Fig. 10 Conceptual model describing ecosystem P nutrition

strategy changes of temperate forests on soils formed from

carbonate vs. silicate bedrock with advancing pedogenesis.

ENIP: Ecosystem P Nutrition Index. BBR: Bad Brückenau,

LUE: Lüss
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horizon, and to some extent also P losses with the

seepage water (Sohrt et al. 2017).

In contrast, in the Cambisols MAN S1 and BAE, the

carbonate rock dissolution residue which accumulates

in the B horizons in the course of pedogenesis is not

depleted, but enriched in P compared to the initial

carbonate bedrock (Fig. 11, upper panels). Fine earth

P contents in the B horizons of Cambisols MAN S1 and

BAE were 0.4 and 0.5 mg P g-1 (Table 2), indicating a

P enrichment by factor 3 (BAE) (Fig. 11) compared to

the respective parent materials (P content

0.15 mg g-1; Table S1). This P enrichment is mainly

caused by the circumstance that in contrast to silicate

weathering, during weathering of pure carbonate rock

in the course of Cambisol formation the vastly

dominating portion of the original rock mass leaves

the soil as mobile Ca2?, (Mg2?), and HCO3
- with the

seepage water. Soil P/rock P content ratios greater

than 1 (Fig. 11) prove that lithogenic P (in the

carbonate rock mostly present as finely dispersed

apatite) which is mobilized in the course of carbonate

dissolution, is significantly retained in the carbonate

dissolution residue (Al and Fe oxyhydroxides, clay

minerals, fine quartz fragments). Phosphorus thus

becomes enriched in the weathering residue (rather

than depleted as in the silicate soils) compared to the

parent material.

TiO2 minerals (in soils mostly rutile) are very

resistant to chemical weathering, and with progressive

chemical weathering of rocks and soils TiO2 (and Ti)
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Fig. 11 Contents of titanium (Ti, index element for chemical

weathering intensity) and phosphorus (P) (left axis) and ratio of

soil P/bedrock P (right axis) in different soil horizons of

Cambisols formed on carbonate bedrock (Mangfall Mts. N1,

Bärenthal; upper panels) and silicate bedrock (Bad Brückenau,
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soil P to bedrock P
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contents increase due to selective enrichment of these

minerals (Milnes and Fitzpatrick 1989; Gupta and Rao

2001). The Ti content in different soil horizons can be

used as index of past chemical weathering associated

with losses of elements bound in less stable minerals

(Sudom and Arnaud 1971; Milnes and Fitzpatrick

1989). Strongly increased Ti contents in the B

horizons of the carbonate soils compared to the

underlying rock (Fig. 11) indicate considerable his-

toric losses of Ca, Mg, and carbonate during weath-

ering and soil formation. Furthermore, increased P/Ti

and P/Fe mass ratios in the Ah horizons of the

carbonate soils compared to their respective subsoils

(Fig. 11, Figure S4) suggest that plant P uplift leads to

additional P topsoil enrichment. Balance calculations

(explained in detail in the Supplementary Information)

indicate that this phase is associated with ecosystem P

leakiness and considerable P ecosystem losses – at

least on a time scale of centuries or millennia. One

important pathway in this context is P seepage water

export. Thus, for a beech forest site with Rendzic

Leptosols formed from dolostone in Northern Bavaria,

Kaiser et al. (2003) reported an annual export of 40 mg

P m-2 with the subsoil seepage water. This P export

may add up to a total ecosystem loss of 400 g P m-2

during 10,000 years of Holocene soil formation,

which is more than the total soil P stock in any

carbonate soil in our study. Another important path-

way of long-term ecosystem P losses is probably

topsoil erosion (Alewell et al. 2020). All carbonate

soils in our study, including the Cambisols, are

characterized by considerable historical (BAE) and/

or recent (top)soil erosion. According to its soil

mineral composition (Stahr and Böcker 2014), BAE

has largely developed in the Neogene (‘‘Tertiary’’),

and presumably has lost part of its topsoil material by

solifluction in the Pleistocene.

Very likely, the Bw horizon was thicker at the

transition Neogene–Pleistocene than today. The entire

time of pedogenesis considered, the average rate of

soil formation by rock weathering, including complete

dissolution of its carbonate fraction, both at MAN S1 as

well as at BAE was higher than topsoil material losses

by erosion; otherwise, in both profiles no Bw horizons

would be present at all. During Bw horizon formation

associated with pedogenetic transformation of a

Rendzic Leptosol into a Cambisol, P is slowly

(because of the low bedrock P content), but steadily

released from the weathering carbonate rock into a

new-formed deepest Bw horizon section. As explained

before, the forest stands at MAN S1 and BAE during

the Rendzic Leptosol stadium probably were strongly

P-limited. Forest P nutrition depended on the recycling

of P that had been acquired by the ecosystem during

previous phases of soil formation, and then was stored

and recycled in topsoil or forest floor SOM, litter, and

plants as well as microbial biomass. At the same time,

carbonate dissolution residue with high P content

(3 mg g-1 P, exceeding even the P content of the

basalt at the P-richest silicate site BBR; cf. calculation

in Supplementary Information) was produced contin-

uously at the boundary layer between the deepest Bw

horizon and the carbonate bedrock (‘‘weathering

front’’).

The P in the carbonate dissolution residue was most

likely bound as Ca phosphate (Hinsinger 2001) and/or

as ternary Fe oxyhydroxide–PO4–Ca complexes

(Mendez and Hiemstra 2020). At more advanced

stages of pedogenesis, soil pH also in the Bw horizon

decreases to values below 6, and soil solution Ca2?

concentrations also decrease. Both processes result in

P mobilization from secondary Ca-PO4 and Ca phytate

precipitates (Hinsinger 2001) as well as remobiliza-

tion of formerly adsorbed inorganic and organic P

from dissolving carbonates (Celi et al.2000). Thus, in

contrast to the Rendzic Leptosol stage of pedogenesis

and ecosystem succession, during the Cambisol for-

mation stage of pedogenesis, a large portion of the P

that had been released into the soil during previous

rock weathering becomes bio-available and probably

is rapidly being acquired by plant roots and mycor-

rhiza fungi. At this stage, forest ecosystems on

Cambisols formed from carbonate rock probably

gradually (re-)change from a P-recycling into a

P-acquiring system (Fig. 10). The additional P

injected into the ecosystem P cycle by remobilization

of inositol phosphate that had been precipitated as Ca

phytate and/or adsorbed to carbonate surfaces in the

Rendzic Leptosol stage of soil formation with advanc-

ing soil acidification probably markedly increases

ecosystem P supply and productivity. Thus, with

progressing pedogenesis, forests on carbonate parent

material are turning into ‘‘pseudo-silicate’’ systems

with (temporarily) high P supply and predominance of

P-acquiring ecosystem nutrition. This situation is

represented by site BAE, whose ENIP with 0.9

(Table 7) is almost as high as that of the P-richest

silicate site BBR (1.0). However, plant root P
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acquisition from the Bw horizon, subsequent plant P

uplift, and ultimate deposition of that P on and in the

topsoil by litterfall and rhizodeposition result in

gradual P depletion, and, thus, P content decrease of

the Bw horizon. Simultaneously, with increasing

ecosystem P supply P (re)cycling is becoming less

tight, and the ecosystem becomes increasingly

‘‘leaky’’ with respect to P. As mentioned before, a

major pathway of ecosystem P losses apart from

erosion is probably P export with the soil seepage

water, particularly as DOP and/or colloid-bound P

rather than oPO4 (Kaiser et al. 2003; Wang et al.

2020). At the high-elevation site MAN with its steep

mountain slopes, additionally plant litter and topsoil

erosion, probably associated with snow gliding events

(Prietzel 2010) contribute to ecosystem P losses.

These P losses are continuously replaced by plant P

acquisition in the Bw horizon, plant P uplift, and

topsoil deposition of litter P, as long as subsoil P is

available and rates of soil (Bw) formation and soil P

input at the weathering front compensating are same or

higher than (top)soil material and P losses. The

positive ecosystem P balance at this stage of soil

development results in a favorable ecosystem P

nutrition status. This is consistent with reports that

temperate forests on deep Cambisols formed from

carbonate rock generally show good or excellent stand

P nutrition (Rehfuess 1990).

In the long run, the positive material balance in

developing Cambisols on carbonate rock (i.e. the

balance of new formation of Bw material at the

weathering front in the subsoil minus topsoil losses by

erosion) will result in a continuously increasing

thickness of the Bw horizon. Then the boundary layer,

where P-poor carbonate rock weathers and leaves

behind P-rich Bw material will gradually move further

down both in absolute terms as well as relative to the

soil surface. At some point in time, plant roots may

hardly reach it. Ecosystem acquisition of lithogenic P

then may become increasingly difficult. At this stage,

continuous ecosystem P losses will be associated with

progressive P depletion of the rooted soil, with the

remaining P bound to soil Fe and Al oxyhydroxides

being increasingly less available to plants and soil

microorganisms. At this time, ecosystem P supply will

deteriorate again, and the system will probably

eventually return into P-recycling mode. The ultimate

fate of forest ecosystems on soils formed from

carbonate bedrock in terms of ecosystem P nutrition

thus will be similar to that of forest ecosystems on

silicate parent material.

We are aware that the carbonate sites in our study

do not represent true chronosequences, and that the

presented ENIp concept is a ranking tool rather than

allowing for quantitative assessment of ecosystem P

nutrition (see detailed discussion in the Supplemen-

tary Information). Nevertheless, the novel information

gathered from our study indicates the validity of our

hypothesis (3) that the concept of P-acquiring vs.

P-recycling ecosystems developed for temperate

forests at silicate sites by Lang et al. (2016; 2017) is

also applicable for carbonate sites. Moreover, it led to

the development of a conceptual model describing and

comparing the change in forest ecosystem P nutrition

strategies (i.e. the ENIp) on soils formed from

calcareous vs. silicate parent material with time and

progressing pedogenesis. Our model (Fig. 10) com-

plements the fundamental models describing and

explaining soil P and forest ecosystem change on

sites with silicate parent material developed by Walker

and Syers (1976), Wardle et al. (2004), and Turner

et al. (2007; 2013). A novel key feature of our

conceptual model is the presence of a second period of

P-acquiring ecosystem nutrition in Cambisols formed

from carbonate bedrock after an initial phase of

dominating P-recycling nutrition when soils are less

developed (Rendzic Leptosols). Even if our model

may be modified or even refuted in future studies, our

study for the first time presents detailed information of

soil P and forest ecosystem changes on sites with

carbonate parent material, which support large forest

areas.

Conclusions

The P status of temperate forest soils on carbonate

parent material at early stages of pedogenesis

(Rendzic Leptosols) is characterized by low P stocks

and a large fraction of Ca-bound Porg. At sites with

such soils, the P nutrition of beech forests largely

depends on tight (re)cycling of P within the forest floor

SOM. This highlights the importance of forest floor

conservation for ecosystem P nutrition at these sites.

Recycling pathways of SOM-bound P in carbonate

soils at early stages of pedogenesis and high Ca

abundance in the entire profile have to include the

dissolution of stable Ca-Porg precipitates, which are
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formed during SOM decomposition and constitute the

majority of soil P. With progressing pedogenesis of

carbonate soils and formation of Bw horizons, soil P

stocks increase. This is due to the formation of Ca-P

complexes as well as due to the formation of inorganic

P and Al- or Fe-bound P pools, when silicate and Fe

oxyhydroxide admixtures in the carbonate parent

materials help retain P while more mobile elements

become dissolved and lost. Forest P nutrition strate-

gies then return to a second phase of predominately

P-acquiring nutrition strategy as it had been at the very

onset of soil formation and ecosystem succession. At

this stage of ecosystem development, and in contrast

to silicate sites, soil acidification and progressing

pedogenesis support improved soil P status rather than

deteriorating it. Using the novel Ecosystem Phospho-

rus Nutrition Index (ENIP) allows for assessing the

relative contribution of P-acquiring and P-recycling

processes for forest ecosystem P nutrition. It proved

useful for comprehensive ranking of beech forests on

different silicate or carbonate parent materials regard-

ing their ecosystem P nutrition strategy.
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Stahr K, Böcker R (2014) Landschaften und Standorte Baden-
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