Home > Publications database > Physiological synaptic activity and recognition memory require astroglial glutamine > print |
001 | 906738 | ||
005 | 20230123110605.0 | ||
024 | 7 | _ | |a 10.1038/s41467-022-28331-7 |2 doi |
024 | 7 | _ | |a 2128/30836 |2 Handle |
024 | 7 | _ | |a 35136061 |2 pmid |
024 | 7 | _ | |a WOS:000757297200017 |2 WOS |
024 | 7 | _ | |a altmetric:122594196 |2 altmetric |
037 | _ | _ | |a FZJ-2022-01660 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Cheung, Giselle |0 0000-0001-8457-2572 |b 0 |
245 | _ | _ | |a Physiological synaptic activity and recognition memory require astroglial glutamine |
260 | _ | _ | |a [London] |c 2022 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1647428073_22289 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a AstroWireSyn - Wiring synaptic circuits with astroglial connexins: mechanisms, dynamics and impact for critical period plasticity (683154) |0 G:(EU-Grant)683154 |c 683154 |f ERC-2015-CoG |x 1 |
536 | _ | _ | |a EU-GliaPhD - Training, Research and Raising of Public Awareness in Cell Biology and Pathology of Neuroglia (722053) |0 G:(EU-Grant)722053 |c 722053 |f H2020-MSCA-ITN-2016 |x 2 |
536 | _ | _ | |a ASTRORIPPLES - Functional roles of astroglial connexins in the generation of sharp wave ripples (622289) |0 G:(EU-Grant)622289 |c 622289 |f FP7-PEOPLE-2013-IEF |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Bataveljic, Danijela |0 0000-0002-9593-8231 |b 1 |
700 | 1 | _ | |a Visser, Josien |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kumar, Naresh |0 0000-0003-0170-888X |b 3 |
700 | 1 | _ | |a Moulard, Julien |0 0000-0002-6075-9081 |b 4 |
700 | 1 | _ | |a Dallérac, Glenn |0 0000-0002-4518-4099 |b 5 |
700 | 1 | _ | |a Mozheiko, Daria |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Rollenhagen, Astrid |0 P:(DE-Juel1)131704 |b 7 |
700 | 1 | _ | |a Ezan, Pascal |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Mongin, Cédric |0 0000-0002-0565-0606 |b 9 |
700 | 1 | _ | |a Chever, Oana |0 0000-0003-3081-1798 |b 10 |
700 | 1 | _ | |a Bemelmans, Alexis-Pierre |0 0000-0001-7605-5225 |b 11 |
700 | 1 | _ | |a Lübke, Joachim |0 P:(DE-Juel1)131696 |b 12 |
700 | 1 | _ | |a Leray, Isabelle |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Rouach, Nathalie |0 0000-0002-5574-888X |b 14 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41467-022-28331-7 |g Vol. 13, no. 1, p. 753 |0 PERI:(DE-600)2553671-0 |n 1 |p 753 |t Nature Communications |v 13 |y 2022 |x 2041-1723 |
856 | 4 | _ | |u https://www.nature.com/articles/s41467-022-28331-7 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906738/files/s41467-022-28331-7.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906738 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131704 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)131696 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|