000906740 001__ 906740
000906740 005__ 20230123110605.0
000906740 0247_ $$2doi$$a10.1103/PhysRevB.105.064425
000906740 0247_ $$2ISSN$$a1098-0121
000906740 0247_ $$2ISSN$$a2469-9977
000906740 0247_ $$2ISSN$$a0163-1829
000906740 0247_ $$2ISSN$$a0556-2805
000906740 0247_ $$2ISSN$$a1095-3795
000906740 0247_ $$2ISSN$$a1538-4489
000906740 0247_ $$2ISSN$$a1550-235X
000906740 0247_ $$2ISSN$$a2469-9950
000906740 0247_ $$2ISSN$$a2469-9969
000906740 0247_ $$2Handle$$a2128/30913
000906740 0247_ $$2altmetric$$aaltmetric:123242644
000906740 0247_ $$2WOS$$aWOS:000761174500003
000906740 037__ $$aFZJ-2022-01662
000906740 082__ $$a530
000906740 1001_ $$0P:(DE-Juel1)190325$$aMendive Tapia, Eduardo$$b0$$eCorresponding author$$ufzj
000906740 245__ $$aAb initio calculation of the magnetic Gibbs free energy of materials using magnetically constrained supercells
000906740 260__ $$aWoodbury, NY$$bInst.$$c2022
000906740 3367_ $$2DRIVER$$aarticle
000906740 3367_ $$2DataCite$$aOutput Types/Journal article
000906740 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648222791_15884
000906740 3367_ $$2BibTeX$$aARTICLE
000906740 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906740 3367_ $$00$$2EndNote$$aJournal Article
000906740 520__ $$aWe present a first-principles approach for the computation of the magnetic Gibbs free energy of materials using magnetically constrained supercell calculations. Our approach is based on an adiabatic approximation of slowly varying local moment orientations, the so-called finite-temperature disordered local moment picture. It describes magnetic phase transitions and how electronic and/or magnetostructural mechanisms generate a discontinuous (first-order) character. We demonstrate that the statistical mechanics of the local moment orientations can be described by an affordable number of supercell calculations containing noncollinear magnetic configurations. The applicability of our approach is illustrated by firstly studying the ferromagnetic state in bcc Fe. We then investigate the temperature-dependent properties of a triangular antiferromagnetic state stabilizing in two antiperovskite systems Mn3AN (A=Ga, Ni). Our calculations provide the negative thermal expansion of these materials as well as the ab initio origin of the discontinuous character of the phase transitions, electronic and/or magnetostructural, in good agreement with experiment.
000906740 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000906740 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906740 7001_ $$00000-0002-7903-2472$$aNeugebauer, Jörg$$b1
000906740 7001_ $$00000-0003-0698-4891$$aHickel, Tilmann$$b2
000906740 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.105.064425$$gVol. 105, no. 6, p. 064425$$n6$$p064425$$tPhysical review / B$$v105$$x1098-0121$$y2022
000906740 8564_ $$uhttps://juser.fz-juelich.de/record/906740/files/PhysRevB.105.064425.pdf$$yOpenAccess
000906740 909CO $$ooai:juser.fz-juelich.de:906740$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906740 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190325$$aForschungszentrum Jülich$$b0$$kFZJ
000906740 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000906740 9141_ $$y2022
000906740 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906740 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000906740 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906740 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906740 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906740 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000906740 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000906740 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000906740 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000906740 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000906740 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000906740 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000906740 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2021$$d2022-11-11
000906740 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000906740 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000906740 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000906740 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000906740 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000906740 980__ $$ajournal
000906740 980__ $$aVDB
000906740 980__ $$aUNRESTRICTED
000906740 980__ $$aI:(DE-Juel1)IAS-1-20090406
000906740 980__ $$aI:(DE-Juel1)PGI-1-20110106
000906740 980__ $$aI:(DE-82)080009_20140620
000906740 980__ $$aI:(DE-82)080012_20140620
000906740 9801_ $$aFullTexts