000906745 001__ 906745
000906745 005__ 20240313103128.0
000906745 0247_ $$2doi$$a10.1038/s41597-022-01180-1
000906745 0247_ $$2ISSN$$a2052-4436
000906745 0247_ $$2ISSN$$a2052-4463
000906745 0247_ $$2Handle$$a2128/30906
000906745 0247_ $$2altmetric$$aaltmetric:124475930
000906745 0247_ $$2pmid$$apmid:35277528
000906745 0247_ $$2WOS$$aWOS:000767813100002
000906745 037__ $$aFZJ-2022-01667
000906745 082__ $$a500
000906745 1001_ $$00000-0002-3589-1750$$aChen, Xing$$b0$$eCorresponding author
000906745 245__ $$a1024-channel electrophysiological recordings in macaque V1 and V4 during resting state
000906745 260__ $$aLondon$$bNature Publ. Group$$c2022
000906745 3367_ $$2DRIVER$$aarticle
000906745 3367_ $$2DataCite$$aOutput Types/Journal article
000906745 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698300621_15026
000906745 3367_ $$2BibTeX$$aARTICLE
000906745 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906745 3367_ $$00$$2EndNote$$aJournal Article
000906745 500__ $$aA large data set is published along this paper and can be found here: https://gin.g-node.org/NIN/V1_V4_1024_electrode_resting_state_data
000906745 520__ $$aCo-variations in resting state activity are thought to arise from a variety of correlated inputs to neurons, such as bottom-up activity from lower areas, feedback from higher areas, recurrent processing in local circuits, and fluctuations in neuromodulatory systems. Most studies have examined resting state activity throughout the brain using MRI scans, or observed local co-variations in activity by recording from a small number of electrodes. We carried out electrophysiological recordings from over a thousand chronically implanted electrodes in the visual cortex of non-human primates, yielding a resting state dataset with unprecedentedly high channel counts and spatiotemporal resolution. Such signals could be used to observe brain waves across larger regions of cortex, offering a temporally detailed picture of brain activity. In this paper, we provide the dataset, describe the raw and processed data formats and data acquisition methods, and indicate how the data can be used to yield new insights into the ‘background’ activity that influences the processing of visual information in our brain.
000906745 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000906745 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000906745 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x2
000906745 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000906745 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000906745 536__ $$0G:(EU-Grant)899287$$aNeuraViPeR - Neural Active Visual Prosthetics for Restoring Function (899287)$$c899287$$fH2020-FETOPEN-2018-2019-2020-01$$x5
000906745 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x6
000906745 536__ $$0G:(EU-Grant)339490$$aCORTIC_AL_GORITHMS - Cortical algorithms for perceptual grouping (339490)$$c339490$$fERC-2013-ADG$$x7
000906745 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906745 7001_ $$0P:(DE-Juel1)176593$$aMorales-Gregorio, Aitor$$b1
000906745 7001_ $$0P:(DE-Juel1)161295$$aSprenger, Julia$$b2
000906745 7001_ $$0P:(DE-Juel1)176920$$aKleinjohann, Alexander$$b3
000906745 7001_ $$0P:(DE-Juel1)172073$$aSridhar, Shashwat$$b4
000906745 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha J.$$b5
000906745 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b6$$ufzj
000906745 7001_ $$00000-0002-1625-0034$$aRoelfsema, Pieter R.$$b7
000906745 773__ $$0PERI:(DE-600)2775191-0$$a10.1038/s41597-022-01180-1$$gVol. 9, no. 1, p. 77$$n1$$p77$$tScientific data$$v9$$x2052-4436$$y2022
000906745 8564_ $$uhttps://juser.fz-juelich.de/record/906745/files/s41597-022-01180-1.pdf$$yOpenAccess
000906745 909CO $$ooai:juser.fz-juelich.de:906745$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000906745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176593$$aForschungszentrum Jülich$$b1$$kFZJ
000906745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176920$$aForschungszentrum Jülich$$b3$$kFZJ
000906745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b5$$kFZJ
000906745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b6$$kFZJ
000906745 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000906745 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000906745 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x2
000906745 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000906745 9141_ $$y2022
000906745 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906745 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000906745 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906745 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906745 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000906745 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906745 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000906745 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI DATA : 2021$$d2022-11-17
000906745 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000906745 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000906745 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T15:03:12Z
000906745 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T15:03:12Z
000906745 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-10-13T15:03:12Z
000906745 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000906745 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000906745 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000906745 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI DATA : 2021$$d2022-11-17
000906745 920__ $$lyes
000906745 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000906745 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000906745 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000906745 9801_ $$aFullTexts
000906745 980__ $$ajournal
000906745 980__ $$aVDB
000906745 980__ $$aI:(DE-Juel1)INM-6-20090406
000906745 980__ $$aI:(DE-Juel1)IAS-6-20130828
000906745 980__ $$aI:(DE-Juel1)INM-10-20170113
000906745 980__ $$aUNRESTRICTED
000906745 981__ $$aI:(DE-Juel1)IAS-6-20130828