001     906745
005     20240313103128.0
024 7 _ |a 10.1038/s41597-022-01180-1
|2 doi
024 7 _ |a 2052-4436
|2 ISSN
024 7 _ |a 2052-4463
|2 ISSN
024 7 _ |a 2128/30906
|2 Handle
024 7 _ |a altmetric:124475930
|2 altmetric
024 7 _ |a pmid:35277528
|2 pmid
024 7 _ |a WOS:000767813100002
|2 WOS
037 _ _ |a FZJ-2022-01667
082 _ _ |a 500
100 1 _ |a Chen, Xing
|0 0000-0002-3589-1750
|b 0
|e Corresponding author
245 _ _ |a 1024-channel electrophysiological recordings in macaque V1 and V4 during resting state
260 _ _ |a London
|c 2022
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1698300621_15026
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a A large data set is published along this paper and can be found here: https://gin.g-node.org/NIN/V1_V4_1024_electrode_resting_state_data
520 _ _ |a Co-variations in resting state activity are thought to arise from a variety of correlated inputs to neurons, such as bottom-up activity from lower areas, feedback from higher areas, recurrent processing in local circuits, and fluctuations in neuromodulatory systems. Most studies have examined resting state activity throughout the brain using MRI scans, or observed local co-variations in activity by recording from a small number of electrodes. We carried out electrophysiological recordings from over a thousand chronically implanted electrodes in the visual cortex of non-human primates, yielding a resting state dataset with unprecedentedly high channel counts and spatiotemporal resolution. Such signals could be used to observe brain waves across larger regions of cortex, offering a temporally detailed picture of brain activity. In this paper, we provide the dataset, describe the raw and processed data formats and data acquisition methods, and indicate how the data can be used to yield new insights into the ‘background’ activity that influences the processing of visual information in our brain.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 1
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 2
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 3
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 4
536 _ _ |a NeuraViPeR - Neural Active Visual Prosthetics for Restoring Function (899287)
|0 G:(EU-Grant)899287
|c 899287
|f H2020-FETOPEN-2018-2019-2020-01
|x 5
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 6
536 _ _ |a CORTIC_AL_GORITHMS - Cortical algorithms for perceptual grouping (339490)
|0 G:(EU-Grant)339490
|c 339490
|f ERC-2013-ADG
|x 7
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Morales-Gregorio, Aitor
|0 P:(DE-Juel1)176593
|b 1
700 1 _ |a Sprenger, Julia
|0 P:(DE-Juel1)161295
|b 2
700 1 _ |a Kleinjohann, Alexander
|0 P:(DE-Juel1)176920
|b 3
700 1 _ |a Sridhar, Shashwat
|0 P:(DE-Juel1)172073
|b 4
700 1 _ |a van Albada, Sacha J.
|0 P:(DE-Juel1)138512
|b 5
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 6
|u fzj
700 1 _ |a Roelfsema, Pieter R.
|0 0000-0002-1625-0034
|b 7
773 _ _ |a 10.1038/s41597-022-01180-1
|g Vol. 9, no. 1, p. 77
|0 PERI:(DE-600)2775191-0
|n 1
|p 77
|t Scientific data
|v 9
|y 2022
|x 2052-4436
856 4 _ |u https://juser.fz-juelich.de/record/906745/files/s41597-022-01180-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906745
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176593
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176920
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138512
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 2
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI DATA : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T15:03:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T15:03:12Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T15:03:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI DATA : 2021
|d 2022-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21