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1024-channel electrophysiological 
recordings in macaque V1 and V4 
during resting state
Xing Chen  1,8 ✉, Aitor Morales-Gregorio  2,3,8, Julia Sprenger  2,4,5, Alexander Kleinjohann  2,4,  
Shashwat Sridhar  2,4, Sacha J.  van Albada  2,3, Sonja Grün  2,4 & Pieter R. Roelfsema  1,6,7

Co-variations in resting state activity are thought to arise from a variety of correlated inputs to neurons, 
such as bottom-up activity from lower areas, feedback from higher areas, recurrent processing in local 
circuits, and fluctuations in neuromodulatory systems. Most studies have examined resting state 
activity throughout the brain using MRI scans, or observed local co-variations in activity by recording 
from a small number of electrodes. We carried out electrophysiological recordings from over a thousand 
chronically implanted electrodes in the visual cortex of non-human primates, yielding a resting state 
dataset with unprecedentedly high channel counts and spatiotemporal resolution. Such signals could 
be used to observe brain waves across larger regions of cortex, offering a temporally detailed picture 
of brain activity. In this paper, we provide the dataset, describe the raw and processed data formats 
and data acquisition methods, and indicate how the data can be used to yield new insights into the 
‘background’ activity that influences the processing of visual information in our brain.

Background & Summary
Using both depth electrode recording1–6 and non-invasive brain imaging7–13 techniques, a wealth of studies have 
shown that even in the absence of sensory input from the external environment, certain brain regions tend to 
share correlated patterns of neuronal activity, known as ‘resting state correlations.’ Such correlations have been 
observed across multiple sensory areas, such as auditory cortex14, visual cortex1,2,5,9,11,13,15,16, and somatosensory 
cortex6,8,17,18. They have also been observed in motor cortex8,18 and in areas responsible for higher cognitive 
functions, such as the prefrontal cortex8,18 and the parietal cortex8,10.

Recent advances in ultra-high-density electrode fabrication and surgical implantation have spurred a 
surge in large-scale, multichannel recordings in rodents19,20, including from multiple brain regions. However, 
ultra-high-channel-count electrophysiological recording techniques have yet to become widely adopted in 
non-human primates. Several challenges need to be addressed: electrode implantation requires access to the 
brain through a craniotomy (or several craniotomies) in the skull, limiting the number of recording sites and 
their spatial distribution. Existing probes with high channel counts, such as the Neuropixels probes from Imec 
(Belgium) were developed for mice and are often too fragile for chronic implantation in the primate brain21, 
although more sturdy versions are under development. Presently available probes that are robust enough have 
relatively modest channel counts. Previous electrophysiological studies in non-human primates therefore usu-
ally involved the simultaneous implantation of up to dozens or, maximally, hundreds of electrodes in the brain22.

In this study, we developed a novel neuronal recording system and implantable interface, to achieve chronic, 
high-resolution, large-spatial-scale recordings of neuronal activity in the visual cortex (V1 and V4) of two 
macaque monkeys23. These techniques allowed us to record neuronal activity across 1024 channels simultane-
ously, with extensive, high-density receptive field (RF) coverage across a large portion of the visual cortex (with 
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Matlab data processing scripts

Task Script name Description

All except impedance 
data align_ns6_nev.m Temporal alignment of raw neuronal data across the NS6 files that are generated by the eight NSPs.

Resting state generate_processed_resting_state.m Extraction of MUAe and LFP data from the aligned NS6 files.

SNR analyse_CheckSNR2.m Extraction of MUAe data from raw NS6 files, and calculation of signal-to-noise ratio of visually evoked responses.

RF

analyse_RF_barsweep.m Extraction of MUAe data from raw NS6 files, to identify the peak responses to sweeping bar stimuli.

analyse_RF_barsweep_coordinates.m Calculation of RF properties using MUAe data.

combine_best_RF_sessions.m Combination of RF data across two sessions, in which different types of bar stimuli were presented.

plot_all_RFs_resting_state.m Generates figures showing the RF centres across all the channels.

- impedance_plotter.m Compile impedance measurements across all NSPs.

Snakemake workflow scripts

Script name Description

Snakefile Main workflow file, executes all other scripts to generate the processed data and figures.

environment.yaml Conda environment file. Contains full list of all Snakemake and Python dependencies. Can be used to recreate the 
Conda environment that was used to run the workflow.

Python data processing scripts

Task Script name Description

All

calculate_LFP.py Calculates the LFP signal from a given array, annotates it with the corresponding metadata and saves it as one .nix 
file per array.

calculate_MUA.py Calculates the MUAe signal from a given array, annotates it with the corresponding metadata and saves it as a .nix 
file per array.

utils.py Several utility functions for the handling of metadata and annotation that are used by the other scripts.

initialize_odml_from_xls.py Creates a template .odml metadata file that contains the information of the experimental setup and specific subject.

enrich_odml_IDs.py Incorporates subject specific electrode IDs to the template .odml metadata file.

enrich_odml_epochs.py
Includes subject and trial specific epoch/trial metadata such as the recording length, number of epochs (open or 
closed eyes in resting state sessions) or number of successful/failed trials (in SNR and RF tasks), as well as their 
timing and duration.

SNR & RF
generate_trial_csv.py Generates a .csv file containing the trial start times, durations, conditions and whether they were successful. This .

csv file is used by the enrichment scripts to incorporate this metadata into the .odml format.

merge_csv.py Utility function that merges a list of .csv files. Used to merge metadata.csv files from RF and SNR values from all 
different arrays into one.

SNR

calculate_SNR.py Calculates the signal-to-noise ratio (SNR) from the MUAe.nix data of a checkerboard stimulus session and saves it 
as a .csv file, along the response amplitude, response onset and baseline specifications.

arrayplot_SNR.py Creates the plots in Figure 7a,b for each SNR session.

arrayplot_response_timing.py Creates the plots in Figure 7c,d for each SNR session.

finalize_odml_SNR.py Aggregates all metadata for a given SNR session and creates the final.odml.

RF

calculate_RF.py Calculates the receptive field (RF) responses from the MUA.nix files of a corresponding session and generates a .csv 
file with RF centers, edges, signal-to-noise ratios and the goodness of the Gaussian fit.

combine_RF.py Combines the large and small bar receptive field (RF) responses into a single metadata file by selecting the best 
arrays from each session.

finalize_odml_RF.py Aggregates all metadata for a given RF session and creates the final .odml. The combined RF metadata are used for 
both large and small bar RF sessions.

Resting state

eyesig_conversion_and_epochs.py Converts the eye signals from .mat to .nix and estimates when the eyes were open or closed from the pupil diameter. 
The estimated epochs are save as.csv files.

eye_epochs_plot.py Creates the plots in Fig. 6 for each resting state session.

finalize_odml_RS.py Aggregates the corresponding SNR and RF values to the metadata of a resting state session and creates the final .
odml. SNR values from the same day and combined RF values are used.

Cross-talk removal

highpass_ns6.py Filters the raw data for extraction of threshold crossings. This file is found in the signal processing folder, but only 
used for cross-talk removal.

get_thr_crossings_mpi.py Extracts threshold crossings from filtered raw signal.

count_synchrofacts.py Estimates the presence of synchrofacts by creating complexity histograms from the threshold crossings and 
surrogates.

systematic_removal_of_electrodes.py Removal of electrodes with highest above-chance synchronous events and plotting of the synchrofact process.

utils.py Utility functions for cross-talk removal.

Online-only Table 1. List of Matlab, Snakemake and Python scripts used for data processing and technical validation, with script 
names and descriptions.

Experimental setup and subject metadata

Format File naming convention
Number of 
files Description

.xls

equipment_specifications.xls 1
List of all hardware 
used in the 
recording of the 
neuronal data.

subject_SUBJ.xls 1 per subject

Subject 
specifications, such 
as species, age, 
initial, surgical 
procedures and 
training status.

.csv

channel_area_mapping_SUBJ.csv 1 per subject

Mapping of 
channels across 
array based (1 to 
64), NSP based (1 
to 128) and global 
indexing (1 to 
1024).

approximate_array_positions_SUBJ.csv 1 per subject

Approximate 
relative position of 
arrays with respect 
to array 1, and their 
rotation. Used for 
plotting.

elec_position_in_array.csv 1

Position of 
electrodes within an 
array relative to the 
centre of the array. 
Used for plotting.

Technical validation metadata

Format File naming convention Number of 
files Description

.txt impedance_NSPX_DDMMYY.txt
8 per 
impedance 
session

Electrode 
impedance values, 
measured at 1 kHz.

.mat impedanceAllChannels_SUBJ_DDMMYY.mat
1 per 
impedance 
session

Impedance data 
files containing the 
impedance values 
for each of the 
channels.

.csv SUBJ_RS_DDMMYY_crosstalk_removal_metadata.csv 1 per resting 
state session

List of electrodes to 
be removed due to 
crosstalk.

Session metadata

Format File naming convention Number of 
files Description

.ccf NSPX.ccf 8 per session
Blackrock 
configuration files 
for the NSPs.

.csv epochs_SUBJ_TASK_DDMMYY.csv 1 per session

Metadata on 
the different 
epochs during the 
recording session. 
For SNR and RF the 
trial onset, duration 
and success is 
registered. In 
resting state 
sessions whether 
the eyes were 
open or closed is 
indicated.

SNR metadata

Format File naming convention Number of 
files Description

.csv

NSPX_arrayY_SNR.csv 16 per SNR 
session

SNR values, along 
with baseline 
mean and SD, 
peak response and 
neuronal response 
latency. The global 
electrode ID (1 to 
1024) is provided 
to identify the 
electrodes.

full_SNR.csv 1 per SNR 
session

A merged version of 
all NSPX_arrayY_
SNR.csv files.

RF metadata

Format File naming convention Number of 
files Description

.csv

NSPX_arrayY_RF.csv 16 per RF 
session

SNR values, RF 
edges, and RF 
centre coordinates.

fullRF.csv 1 per RF 
session

A merged version of 
all NSPX_arrayY_
RF.csv files.

Compiled metadata

Format File naming convention Number of 
files Description

.odml metadata_SUBJ_TASK_DDMMYY.odml 1 per session
A compiled file of 
all the metadata for 
a given session.

Online-only Table 2. Metadata and their file formats. In the naming conventions, ‘X’ represents the NSP 
number (1 to 8), ‘Y’ represents the array number (1 to 16), ‘SUBJ’ represents the subject name (L or A), ‘TASK’ 
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overlap between V1 and V4 RFs), spanning the central 6–9 degrees of visual angle across one quadrant of the 
visual field. Our dataset24 covers the full range of spectral components from raw signals sampled at 30 kHz to 
local field potentials (LFP, at 1–100 Hz) to multiunit spiking activity (MUA, at 500–9000 Hz).

We expect these resting state data to be of interest to neuroscientists in the fields of computational and 
systems neuroscience. Potential applications include correlation analyses, large-scale modelling25, detection 
of activity waves26, teaching material, and more. For example, the strength and anatomical distribution of 
co-variations in activity could shed light on the anatomical and functional connectivity between or within the 
areas under examination27, including the retinotopic organisation of V1 and V4.

In the visual system, resting state correlations have been used to calculate functional correlations between 
brain regions in order to identify the borders of visual cortical areas such as V1, V2 and V315,28,29, and for the 
estimation of the retinotopic layout within individual visual areas30–32. Across visual areas, the lateral genicu-
late nucleus has been observed to exhibit higher levels of correlated activity with primary visual cortex than 
with higher-order visual areas, whereas activity in V2 and V3 is more closely correlated with V4 and hMT+11. 
Retinotopically corresponding locations across areas V1, V2 and V3 show increased functional connectivity, and 
a similar pattern has been observed for corresponding brain regions in the two hemispheres.

This dataset could further be used to compare electrophysiologically recorded neuronal activity to that 
obtained using non-invasive techniques. To give an example, we recently compared population RF estimates 
obtained with multiple-channel electrophysiology and fMRI-generated BOLD activity33. Indeed, MRI8–10,15 and 
invasive electrophysiology1–5,27,34–37 provide complementary approaches to examining correlations, including 
during resting state: fMRI offers a large-scale perspective, revealing the interplay between multiple brain areas 
and permitting the examination of entire resting state networks, via fluctuations in the MRI signal which have a 
relatively coarse spatial and temporal resolution. By contrast, electrophysiology yields direct recordings of neu-
ronal activity from a smaller set of brain regions, but at a high spatial and temporal resolution.

The present dataset could also serve as a template for future publications of electrophysiology datasets, pro-
viding standardized methods and tools for the description, preparation, and organization of both data and meta-
data, thereby contributing to the present era of open data sharing and collaboration.

The data are available on the G-Node Infrastructure (GIN, https://gin.g-node.org/), an open-access 
data-sharing platform. The dataset version described in this publication can be found at https://gin.g-node.org/
NIN/V1_V4_1024_electrode_resting_state_data. The dataset follows the FAIR principles38, i.e. it is designed to 
be findable, accessible, interoperable, and reusable.

Methods
Our subjects were two male rhesus macaque monkeys (Macaca mulatta, monkeys A and L). Each animal 
received two cranial implants during two separate surgical procedures. The first of these implants was a cus-
tomized, in-house-designed, 3D-printed head post for head fixation39. The head post was affixed to the setup 
to stabilize the head throughout the recordings. This ensured that the eye tracker captured the eye data (pupil 
diameter and position) accurately throughout the recordings (see Chen et al., 2017, for a detailed description of 
these methods). The second was a 1024-channel implant for the visual cortex, consisting of 16 Utah electrode 
arrays (Blackrock Microsystems) attached via 7-cm-long wire bundles to a customized, in-house-designed, 
3D-printed pedestal (referred to in the rest of the manuscript as a ‘1024-channel pedestal,’ Fig. 1)23. Each array 
contained an 8-by-8 grid with 64 iridium oxide electrodes. The length of each electrode shank was 1.5 mm and 
the spacing between adjacent shanks was 400 μm. The impedance of the electrodes at pre-implantation ranged 
from 6 to 12 kΩ (as measured by Blackrock Microsystems prior to lead attachment). Each electrode was con-
nected to a contact pad on the Land-Grid-Array (LGA) interface of the pedestal. Reference wires were attached 
to every other array, and each reference wire served as the reference for two arrays, yielding eight reference wires 
in total. Each reference wire exited the wire bundle several millimetres before the point where the wire bundle 
met the array. The other end of the reference wire was connected to one of the contact pads on the LGA of the 

Fig. 1 (a) Photograph of the implant, consisting of a 1024-channel cranial pedestal connected to 16 Utah arrays. 
The base of the titanium pedestal was customized to fit precisely on the surface of the skull, as measured with a 
CT scan. (b) The references wires were located on alternating arrays (array numbers 1, 3, 5, 7, 9, 11, 13, and 15) 
and ran alongside the wire bundle before emerging several millimetres before the point of connection between 
the wire bundle and the array. (c) Location of implantation of every array in the visual cortex in monkey L. Two 
arrays were implanted in V4, and 14 arrays were implanted in V1, in each monkey.
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pedestal (as was each of the electrodes), and referencing was performed by the Cereplex M headstage (i.e. the 
connections were hardwired such that the electrodes on each pair of arrays used the signal from the reference 
wire as their reference).

Surgeries. All experimental surgical procedures complied with the NIH Guide for Care and Use of 
Laboratory Animals (National Institutes of Health, Bethesda, Maryland), and were approved by the institutional 
animal care and use committee of the Royal Netherlands Academy of Arts and Sciences (approval number AVD-
8010020171046). The subjects were 4 and 5 years old, and weighed 6.5 and 7.2 kg, respectively, at the time of 
head post implantation; and both were 7 years old, weighing 11.0 and 12.6 kg, respectively, during visual cortex 
implantation.

A course of antibiotics was started two days prior to each operation. We induced anaesthesia with intramus-
cularly administered ketamine (concentration of 7 mg/kg) and medetomidine (0.08 mg/kg). We administered 
0.1 ml atropine (0.5 mg/ml) if the heart rate dropped below 75 bpm. The animal was placed on a heated mat to 
allow continuous regulation of body temperature. Eye ointment was applied to maintain hydration of the eyes. 
Xylocaine ointment was applied to the ear bars of the stereotaxic frame, and the animal’s head was secured in 
the frame.

For the maintenance of anaesthesia, the animal was intubated and ventilated with 0.8–1% isoflurane (mixed 
with 60% O2 and 40% air) and a catheter was inserted into a vein in the arm. During surgical implantation of 
the head post, we administered fentanyl at 0.005 mg/kg on indication, Ringer-glucose at 10–15 ml/kg/hour, and 
antibiotics intravenously. For surgical implantation of the electrode arrays, we additionally administered mida-
zolam at 0.5 mg/kg (concentration 5 mg/ml) once per hour, and we administered dexamethasone at 0.25 mg/kg 
twice per hour, starting before opening of the skull until skull closure. ECG, heart rate, SpO2, CO2, temperature, 
muscle tone, respiration, and the response to pain stimuli were monitored continuously. The head was shaved 
and cleaned with chlorhexidine solution (Hibicet scrub) and iodine solution (5% iodine in water). For installa-
tion of cranial implants, a flap of skin was carefully detached from the skull over the desired implant location, 
reflected, and wrapped in damp cotton swabs to keep it moist. Methods of implanting the head post and arrays, 
and post-surgical recovery, are described separately in the following sections.

Head post: We sterilized the titanium head post by autoclaving it prior to surgery. It was placed on the skull 
and adjusted such that it fitted against the skull. We used 2-mm-diameter Ti cortex screws (DePuy Synthes, 
Amersfoort, Netherlands) to secure the head post to the bone. The wound margins were sutured together and an 
extra stitch was made to hold the skin closed around the base of the head post.

1024 channel implant: Before the surgery, we sterilized the implant (Fig. 1a) using gamma radiation. During 
the surgery the pedestal was placed on the skull and secured with bone screws. We made a craniotomy over 
the left hemisphere and opened the dura. We implanted 16 arrays of 64 electrodes each in the visual cortex (14 
arrays in V1, and 2 in V4; Figs. 1c, 2a). The dura was sutured closed. We filled the space under the bone flap with 
Tissucol (Baxter) and placed the flap back while the Tissucol was still fluid. We secured the bone flap to the skull 
with Ti strips. The skin was pulled back around the pedestal and sutured closed.

Ten minutes before the end of the surgery, the ventilator was switched to stand-by mode, allowing sponta-
neous breathing. Upon conclusion of the procedure, the monkey was released from the stereotaxic frame. The 
isoflurane was switched off and an antagonist was administered intramuscularly (i.m.) (atipamezole 0.08 mg/
kg), allowing the animal to wake up.

Recovery: Subjects were closely monitored following the operation and given several weeks to recover. We 
administered antibiotics (typically amoxicillin and clavulanic acid) for 10 days (in consultation with a veterinar-
ian) and dexamethasone for five days in decreasing doses (from 0.7 mg/kg i.m. to 0.1 mg/kg i.m.). As analgesia, 
we initially used Temgesic, at two doses per day (0.003 mg/kg i.m.). After three days we switched to finadyne, 
once a day, for six days (1–2 mg/kg i.m.). The socially housed animals were housed solitarily during the first 8 to 
9 days following surgery, after which social housing was resumed.

At the time of recording, the post-surgical implantation period was 2 and 4 years for the head posts, and 
3 months and 1 year for the 1024-channel pedestal, for monkeys L and A, respectively, and the customized 
implants remained mechanically stable and well anchored to the skull throughout this period.

Datasets. In this study, we present 1) resting state data from the two monkeys, collected across three record-
ing sessions per animal. In addition to this main dataset, we collected two supplementary datasets to allow further 
interpretation of the resting state data: 2) a dataset acquired during a visual fixation task, collected across three 
recording sessions per animal (on the same days as the acquisition of the resting state dataset), for quantifica-
tion of the size and signal-to-noise ratio of the neuronal responses elicited by a visually presented checkerboard 
stimulus (Fig. 3a); and 3) a dataset acquired during a fixation task, collected across two recording sessions per 
animal, in which we presented moving light bars to map the receptive fields (RFs) of the neurons (Fig. 3b). Table 1 
provides a list of all the recording sessions for the three datasets.

Resting state. For the resting state recordings, the monkey was seated, head-fixed, in a room next to the opera-
tor room, with the lights turned off. The room was silent during the recordings (although it was not acoustically 
isolated). Note that although the lights were off, the setup was not completely dark, due to the presence of small 
LED lights on our recording equipment, and a small amount of light coming under the door from the adjacent 
room. The monkey did not carry out a task and was allowed to stay awake or fall asleep at any point in time dur-
ing the recording, and was free to shift its gaze and centre of attention. We recorded the pupil diameter and the 
eye camera also allowed us to determine whether the eyes were open or closed.

https://doi.org/10.1038/s41597-022-01180-1
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Our aim was to provide a resting state dataset in which the signals were likely to be derived from the same or 
similar groups of neurons, allowing for pooling of data across the recording sessions. Therefore, the three resting 
state sessions were recorded within a short time span (across consecutive working days where possible).

Visually evoked activity. For each resting state dataset we also collected a dataset with visually evoked activity 
on the same day in order to provide an assessment of the quality of the neuronal signal on each channel that day. 
This dataset consisted of at least 30 trials in which the monkey viewed a grey screen (with a luminance of 14.8 cd/
m2) before a full-screen checkerboard stimulus was presented for 400 ms while the monkey maintained fixation 
on a dot located at the centre of the screen (Fig. 3a). The levels of visually evoked activity (relative to baseline 
activity) provided a measure of the quality of the neuronal signal obtained on each channel. We determined 
the ‘signal-to-noise-ratio’ (SNR) as the amplitude of the visually driven response divided by the standard devi-
ation of activity in a time window before stimulus onset (see below for details). If desired, the SNR may be used 
during subsequent analyses to select only the channels from the corresponding resting state dataset that clearly 
have stimulus-evoked responses and to discard those that show poor or no signal. The size of the checkerboard 
squares was 1 degree of visual angle (dva), and the luminance values of the black and white squares were 0 and 
92.1 cd/m2, respectively.

Fig. 2 (a) Numbering of the 16 arrays that were implanted in the visual cortex. LS: lunate sulcus. STS: superior 
temporal sulcus. The yellow dot on each array indicates the side on which the wire bundle exits the array. 
Right: Numbering of channels on each array, as viewed from the top of the array after implantation, rotated 
90 degrees CCW relative to the left panel. (b–e) RF map, showing the coordinates of the V1 (b,c) and V4 (d,e) 
RF centres for channels with an SNR of more than 2 for each condition (N = 893 and 679 in monkeys L and A, 
respectively). Channels are colour-coded by array number, using the same colour code as in a. The receptive 
fields are located in the lower-right quadrant of the visual field.
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In monkey A, the resting state data and matching visually evoked data were collected 1 year after surgical 
implantation, following the completion of other (unrelated) experiments. By this time, the number of channels 
with high SNR had decreased, compared to the number observed soon after surgery. To allow future users of 
the data to carry out analyses of visually evoked responses across close to 1024 channels (independently of the 

a

b

Fig. 3 (a) Illustration of the task used to measure visually evoked responses and calculate SNRs. 1: The monkey 
initiates the trial by fixating on a red spot at the centre of the screen. 2: After 400 ms, a checkerboard stimulus 
is presented. The monkey is required to maintain fixation throughout stimulus presentation, which lasts for 
400 ms. 3: The monkey receives a reward upon stimulus offset. Event codes (as recorded in the.nev files) are 
shown between brackets; e.g. stimulus onset is encoded by the value ‘2.’ (b) Illustration of the RF mapping 
task. 1: The monkey initiates the trial by fixating on a red spot at the centre of the screen. 2: After 200 ms, a 
bar stimulus is presented, which moves in one of the four cardinal directions (yellow arrow). The monkey is 
required to maintain fixation throughout stimulus presentation, which lasts for 1000 ms. 3: The monkey receives 
a reward upon stimulus offset.

Monkey Task type
Recording day 
(dd/mm/yyyy) Duration

Good channels 
(SNR >  = 2)

A

Resting state

14/08/2019 32 min 34 s —

15/08/2019 38 min 17 s —

16/08/2019 42 min 0 s —

SNR

04/10/2018(*) 2 min 37 s 899

14/08/2019 4 min 54 s 359

15/08/2019 3 min 54 s 416

16/08/2019 4 min 12 s 379

RF
Large bars 28/08/2018 18 min 35 s 769(**)

Small bars 29/08/2018 10 min 42 s 931(**)

L

Resting state

25/07/2017 22 min 42 s —

9/08/2017 22 min 0 s —

10/08/2017 21 min 37 s —

SNR

25/07/2017 1 min 36 s 981

9/08/2017 1 min 35 s 977

10/08/2017 1 min 58 s 992

RF
Large bars 26/06/2017 33 min 43 s 957(**)

Small bars 28/06/2017 31 min 47 s 821(**)

Table 1. Overview of datasets and sessions. Channel quality is based on the SNR. For each resting state session, 
an SNR session was collected on the same day to provide a measure of signal quality. *Extra SNR session, which 
was collected at an earlier period in time than the other SNR sessions, and which does not have a matching 
resting state session. **Channel quality in the RF datasets is considered to be good if the channel showed an 
SNR >  = 2 for any sweeping bar direction.
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resting state data), we provide an ‘extra’ dataset of visually evoked activity from monkey A, which was obtained 
10 weeks after implantation. This ‘early’ SNR dataset was collected using an identical task design to that of the 
other SNR datasets, while providing a larger number of channels with high SNR. Note that this additional data-
set is stand-alone and is not paired with a resting state session.

Receptive field mapping. The subjects viewed moving light bars that appeared at specific locations on the 
screen, allowing us to identify the RF location of the neurons recorded on each channel.

To characterize the receptive field properties on each channel, we recorded the responses evoked by white 
sweeping bar stimuli that moved in each of four possible directions (top to bottom; bottom to top; left to right; 
and right to left)40. RF size scales with eccentricity41: the farther away an RF is from the fixation, the larger its 
size. Neurons with small RFs respond best to small stimuli, whereas neurons with larger RFs show a more pro-
nounced response to large stimuli.

Hence, the RF mapping task included two stimulus sets: 1) RFs of low eccentricity were mapped out using a 
small, thin, slow-moving bar (4 degrees of visual angle [dva] in length, 0.04 dva in thickness, moving at a rate of 
4 dva per second) that was positioned close to the fixation spot. 2) RFs of higher eccentricity were mapped out 
using a long, thicker, faster-moving bar (20 dva in length, 0.19 dva in thickness, 20 dva/s) that was positioned 
farther from the fixation spot (see Fig. 3b). Stimulus presentation was controlled using custom-written Matlab 
scripts (Table 2) that were run on the stimulus control computer. The two types of visual stimuli elicited spatially 
and temporally well-defined neuronal responses, which allowed for the measurement of RFs closer to and far-
ther away from fixation.

Data collection. Electrophysiological signals from V1 and V4 were recorded from 1024 channels distributed 
across 16 Utah Arrays (each consisting of 8 × 8 electrodes), at a sampling rate of 30 kHz (see Figs. 1c, 2a for their 
locations in the visual cortex), and further processed by equipment from Blackrock Microsystems (see Fig. 4 
for a schematic overview of the setup). The neuronal signals were passively conducted via the LGA interface on 
the 1024-channel pedestal to an electronic interface board (EIB), i.e. an adapter with 32 36-channel Omnetics 
connectors, which in turn interfaced with eight 128-channel CerePlex M headstages. Each CerePlex M processed 
signals from two 64-channel Utah arrays, applying a 0.3–7500 Hz analog filter at unity gain (i.e. no signal amplifi-
cation was carried out). The CerePlex M performed a 16-bit analog-to-digital conversion (ADC) with a sensitivity 
of 250 nV/bit. The digitized signal on each CerePlex M was sent to a 128-channel Digital Hub, i.e. each Digital 
Hub processed data coming from one CerePlex M, which in turn originated from two electrode arrays. The 
Digital Hub converted the digital signal into an optic-digital format, which was then sent via an optic-fibre cable 
to a 128-channel Neural Signal Processor (NSP) for further processing and storage. Each Digital Hub delivered 
the signal to a single NSP. There were eight NSPs and each NSP processed the data derived from two electrode 
arrays.

Control of the NSPs was carried out on two PCs (PC #1 and PC #2, running Windows 7 Professional) using 
the Blackrock Central Software Suite (version 6.5.4), with one instance of the software being run for each NSP, 
i.e. a total of eight instances of the software ran simultaneously during data acquisition. Each PC was connected 
to four NSPs, and four instances of the software were run on each PC. Each NSP stored the raw neuronal signals 
from 128 channels in a single raw data file (corresponding to channels 1 to 128), giving rise to a total of eight raw 
data files across the eight NSPs. The data recorded from the eight NSPs were temporally aligned as described in 
the section, ‘Temporal alignment of raw data.’

Due to the high volume of data being processed and stored by each NSP, the onset of recording was con-
trolled manually with a temporal offset of several seconds between NSPs. Before starting the recording on any 
given NSP, the operator checked to ensure that on-going recordings were running smoothly on the other NSPs, 
thereby avoiding buffer overflow and dropped packet issues due to system overload at the start of recording. 
Automatic updates were disabled to prevent unwanted disruptions during recording.

Eye tracking. During each recording, an infrared eye tracker (TREC ET-49B, version 1.2.8, Thomas Recording 
GmbH) was used to sample the eye position and pupil diameter for both the X- and Y-axes with a frame rate of 
230 Hz, and the data were stored at a sampling rate of 30 kHz.

The eye tracking hardware was controlled by a dedicated PC (PC #4) using Eyetracer software (Thomas 
Recording), which forwarded the analog signals regarding the eye position and pupil diameter directly to NSP 

Experiment control scripts

Task Script name Description

Resting state sync_pulse_resting_state.m Sending of sync pulses to eight NSPs for post-hoc alignment of raw data.

SNR runstim_CheckSNR.m Presentation of full-screen checkerboard stimuli to elicit visually evoked 
responses.

RF
runstim_RF_barsweep_stimcondition1.m Presentation of small sweeping bar stimuli to carry out RF mapping on 

channels where RFs were close to fixation.

runstim_RF_barsweep_stimcondition2.m Presentation of large sweeping bar stimuli to carry out RF mapping on 
channels where RFs were further from fixation.

Table 2. List of Matlab scripts used for experimental control and stimulus presentation, with script names and 
descriptions. The experimental control scripts are highly specific to the hardware and are not designed to run 
without the equipment. We provide the scripts for completeness.
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#1. X and Y eye positions were recorded on channels 129 and 130 of NSP #1, respectively, while X and Y pupil 
diameter were recorded on channels 131 and 132, respectively.

On all NSPs, the data collected on channels 1 to 128 comprised the neuronal signals. On NSP #1, channels 
129 to 132 additionally contained the eye signals. Furthermore, analog synchronization signals were recorded 
on the NSP channel 144; these can be ignored as the synchronization pulses were also registered as digital events 
in the.nev files. All other NSP channels (133–143) did not record any data. We stored the raw data from the 
relevant channels (containing neural and eye signals) as specified in the configuration files that were loaded into 
the Blackrock Central Software Suite for each NSP.

Stimulus and reward timing, stimulus identity and experiment control. A stimulus control computer (PC 
#3) was used for the execution of task-related events and stimuli with high temporal precision during each 
of the task paradigms. The task-related event codes consisted of numbers that were sent out from PC #3, via 
a Data Acquisition and Control System (DAS) Multifunction Analog and Digital I/O board (DAS1602/16, 
Measurement Computing) through a splitter cable, to the digital input ports (16-bit DB37) on each of the NSPs. 
The corresponding channels on the digital input port of each NSP sampled the incoming signal at 30 kHz and 
were configured to detect when an incoming bit was set to a ‘high’ value on one of the pins. In our experiments, 
only the first 8 digital input pins (1 to 8) on the digital input ports of the NSPs were used, whereas the other 8 
digital input pins (9 to 16) were disregarded. To encode a bit change initiated by the stimulus control computer, 
a 500-ms voltage pulse was sent on the desired pin. On each NSP, the event codes were recorded in the events file 
(.nev) as a sequence of numbers that ranged in value from 1 to 8. Note that since the DAS board used zero-based 
indexing, when instructions were sent from the Matlab script to the DAS board, the sequence of pin numbers 
specified in the Matlab script ranged from 0 to 7, instead of 1 to 8. Table 3 provides a list of the bit identities and 
their interpretations.

As the precise times at which recording was initiated or terminated varied across the eight NSPs, the duration 
of the raw data traces also varied slightly between NSPs. Hence, the common digital signal that was sent to all 
eight NSPs simultaneously via their digital input ports was used to precisely align the raw data traces between 
NSPs during data processing (described in the section, ‘Temporal alignment of raw data’).

During the resting state sessions, the digital signal consisted of a randomly generated sequence of numbers 
(ranging in value from 1 to 8), which were sent at 1-second intervals using a custom Matlab script that was run 
on the stimulus control computer. A list of experimental-control scripts is provided in Table 2. During the SNR 

Fig. 4 Overview of devices and the total number of units (shown in parentheses) used to obtain, process and 
store data. Boxes represent individual devices/systems and arrows show the direction of signal transmission 
between the devices. Note that pairs of Utah arrays ultimately connect to a single neural signal processor (NSP), 
giving rise to a total of 8 parallel connection pathways. The apparatus and connections for the first connection 
pathway (i.e. for the first pair of Utah arrays) are shown in detail, while those for the other 7 pathways (for arrays 
3 to 16) are depicted in condensed form. Pupil size and position are only recorded on NSP #1, and are not sent 
to the other 7 NSPs.
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and RF mapping tasks, a series of trial-related event codes were sent. Event codes were sent upon stimulus onset 
and offset and during reward delivery via the same system as that used to send sync pulses during the resting 
state. Additionally, during the RF task, the stimulus condition used on that particular trial (the direction of bar 
movement) was sent as an event code. PC #3 also received a copy of the X and Y eye position to check the gaze 
fixation and determine the success or failure of a trial. Instructions for fluid delivery were then sent to the reward 
system (Crist Instruments) (Table 3). A summary of the digital codes that were used for the three datasets is 
provided in Table 2. During post-hoc analysis of the raw data, trial-related events could be identified with high 
temporal precision (with 30-kHz resolution) and were used for precise temporal alignment of data across NSPs.

Data pre-processing. The datasets are comprised of temporally aligned raw data, as well as data that have 
been pre-processed to facilitate their usage. The pre-processing steps included the extraction of local field poten-
tial (LFP) signals and envelope multiunit activity (MUAe, which represents the aggregation of spiking activity 
across multiple units recorded via one electrode – details on how we computed MUAe are provided below)40 from 
the raw recording traces, and a systematic registration of metadata. These steps were executed after the recording 
session and implemented into a Python workflow using the Snakemake workflow management system42. In addi-
tion to this fully integrated workflow, standalone Matlab pre-processing scripts are also included. The metadata 
integration is only provided based on Python. A full list of data-processing scripts is given in Online-only Table 1. 
See a schematic description of the data pre-processing workflow in Fig. 5.

Temporal alignment of raw data. The onset and offset of recording were not synchronous across NSPs. Hence, 
the raw neuronal data were temporally aligned across the files that were generated by the eight NSPs. Excess 
data at the beginning and end of each file that were not common to all eight NSPs were removed, yielding files 
of the same duration. Any channels that did not contain neuronal data, i.e. channels 133 or higher on NSP 1 and 
channel 129 or higher on NSPs 2 to 8, were also removed. The temporally aligned data were saved in the .nev 
and .ns6 formats. The unaligned raw data files are not provided in the data repository due to their large volume, 
but are available upon reasonable request. The lightweight events files (.nev) are provided in both their aligned 
and non-aligned form.

Eye signal processing. In many human studies on resting state activity, subjects are given blindfolds and asked 
to keep their eyes closed. For the resting state sessions in our subjects, we recorded the pupil size and included it 
in the dataset, instead of using blindfolds. The eye position and pupil diameter (channels 129 to 132 on NSP #1) 
were temporally aligned, labelled, and saved in .mat and .nix format (Fig. 5). The baseline value of the recordings 
containing the pupil diameter was not at 0 mV. Hence, this signal was corrected by subtracting its minimum 
value within the given session. Additionally, we identified whether the eyes were open or closed, i.e. eye closure. 
We down-sampled the signals to 1 Hz, to reduce noise and exclude short blinks, and combined the X and Y pupil 
diameter readings using the Euclidean norm. A low threshold was set and if the combined diameter signal fell 
below this threshold, we considered the eyes to be closed, otherwise they were considered to be open (Fig. 6). 
During the recordings, the subjects occasionally exhibited signs of sleepiness and their eyelids drooped for a 
while, before they closed their eyes completely. Their eyes would sometimes stay closed for minutes at a time. 
These epochs can be found in the eye data, as extended periods in which the pupil diameter is below threshold. 
Users may for instance select the time periods during which the monkeys’ eyes were closed for a given duration 
for further analyses of the resting state. We provide both the full (30-kHz) and down-sampled (1-Hz) eye signals 
in the data repository.

Generation of MUAe and LFP signals from raw data. Following the temporal alignment of raw data across the 
NSPs, two commonly used types of neuronal signals were extracted from the data (Fig. 5): envelope multiunit 
activity (MUAe) and local field potentials (LFP).

To generate the MUAe, the raw data were filtered between 0.5 and 9 kHz. A full-wave rectification was 
performed on the filtered signal, followed by a low-pass filter of 200 Hz. Filtering was carried out using a 

Bit
NEV 
encoding

Interpretation

Resting state SNR

RF

Cond Description

0 1

Sync pulse

— — —

1 2 Stimulus onset — Stimulus onset

2 4 Stimulus offset — Reward delivery

3 8 Reward delivery 1 Rightward sweeping bar

4 16

—

2 Upward sweeping bar

5 32 3 Leftward sweeping bar

6 64 4 Downward sweeping bar

7 128 — —

Table 3. Relation between bit identity that is sent by the stimulus control computer, the event that is encoded in 
the events file (.nev) by the NSPs, and the trial-related event that occurred at the moment that the bit was set to 
‘high’. Note that only a single bit is activated at each point in time. The resulting decimal code is 2^N, where N is 
the identity of the active bit/pin.
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Fig. 5 Data pre-processing diagram. Top: Processing steps for the three datasets, leading to the output data 
and metadata files. Snippets of the full data are depicted for illustrative purposes. Data alignment precedes the 
processing steps shown here. Bottom: Integration of metadata into a hierarchical odML file. Metadata were both 
externally collected (recording apparatus, subject-specific metadata, etc.) and calculated from the recordings 
(eye signal epochs, RF, SNR). All metadata are integrated into a single odML file per session.

Fig. 6 Overview of pupil diameter during an example resting state session, for each monkey. (a,d) Traces 
showing the pupil diameter, the state of the eye (‘open’ or ‘closed’) and the mean MUAe from the highest-SNR 
electrode array. The Pearson correlation between the eye state and MUAe is also shown. (b,e) Percentage of 
time spent with eyes open and closed. (c,f) Bar plot of the duration of time segments that were spent in each 
state, ordered by duration (segments shorter than 100 ms are likely to be eye blinks and are not shown). Colour 
coding is identical for all panels.
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Butterworth filter, of order 4. The data were down-sampled by a factor of 30, yielding for each original signal an 
MUAe signal with a sampling rate of 1 kHz.

To generate LFP signals, the raw data were low-pass filtered at 150 Hz (Butterworth filer, order 4) 
down-sampled to 500 Hz. The newly generated MUAe and LFP signals were saved in the .mat and .nix file for-
mat, where each file contains the data from one Utah array with 64 channels.

Signal-to-noise ratio (SNR). To quantify the signal quality of the recorded neuronal activity, the 
signal-to-noise ratio (SNR) for each channel was calculated based on the amount of visually evoked activity 
that was elicited upon presentation of a full-screen checkerboard stimulus, relative to baseline activity, across 
a minimum of 30 trials. We calculated the mean and standard deviation (SD) of the MUAe during the 300-ms 
time window prior to stimulus onset (Meanspontaneous and SDspontaneous of the baseline activity) for each trial. Next, 
trial-averaged MUAe data were smoothed with a moving average of 20 bins (i.e. at a sampling rate of 1 kHz, 
each bin comprised 20 ms), and we identified the peak level of activity elicited during stimulus presentation 
(Peakstimulus_evoked). The SNR was then calculated following Eq. 1:

SNR
Peak Mean

SD
,

(1)

_stimulus evoked spontaneous

spontaneous
=

−

A high SNR is indicative of a functional electrode that yields good-quality MUAe. Since the electrodes were 
located in the visual cortex, they were expected to show responses to visually presented stimuli. A low SNR value 
may be indicative of one of two situations: 1) For channels where the receptive fields overlap with or are located 
close to the fixation spot (close to the sulcus between V1 and V4), the presence of the fixation spot in the recep-
tive field may elicit high levels of activity throughout the trial, including during the ‘baseline activity’ period that 
precedes stimulus onset. This would result in elevated levels of baseline activity and thereby decrease the SNR. 
2) The quality of the signal recorded on that particular electrode may be poor due to factors such as electrode 
failure, connection failure, poor contact between the electrode and the neuronal tissue and/or excessive tissue 
gliosis around the electrode.

To select good channels for further analysis of MUAe, we recommend setting a threshold value for the SNR 
(e.g. 2 or higher) to include only the channels with an SNR value that is above the threshold in subsequent anal-
yses. See Table 1 for the number of high-quality electrodes per session and Fig. 7a,c,e for the SNR values from an 
example session. The SNR values can be found in the metadata files for the corresponding session (Online-only 
Table 2).

Neuronal response latency. In addition to the SNR we estimate the neuronal response latency from the 
checkerboard stimulus task (i.e. the SNR task). We define the response latency as the time elapsed between stim-
ulus onset and the first time that the trial-averaged MUAe signal is more than 2 times the SDspontaneous in 5 con-
secutive bins. The spontaneous activity period is defined as 300 ms prior to stimulus presentation, as in the SNR 
calculation. We require the activity to be above the threshold in several consecutive bins to ensure robustness 
against rapid noise fluctuations. Figure 7b,d,f shows the response latency for a sample session in each monkey. 
Our measurements are in agreement with previous reports of latency in the visual system1. The SNR and latency 
are calculated together and can be found in the same metadata files (Online-only Table 1).

Receptive field (RF) mapping. We estimated the RF of each electrode using sweeping bar stimuli. The 
average MUAe was calculated across trials with a given direction of bar motion. A Gaussian was fitted to this 
trace, and the onset and offset of the visually evoked response were calculated as the times on each trial that 
corresponded to the midpoint of the Gaussian minus and plus 1.65 times the standard deviation of the Gaussian, 
respectively. The vertical and horizontal boundaries of the RF on each channel were then calculated as the mean 
of two values: 1) the spatial location corresponding to the onset time of the response elicited by a bar moving in 
a particular direction, and 2) the spatial location corresponding to the offset time of the response elicited when 
the bar moved in the opposite direction40. The x- and y-coordinates of the RF centre were taken as the midpoints 
between the horizontal and vertical boundaries of the RF, respectively, and the RF size was calculated according 
to the equation:

D r l t b( ) ( ) , (2)2 2= − + −

where D is the diameter of the RF, r and l are the x-coordinates of the right and left boundaries and t and b are 
the y-coordinates of the top and bottom boundaries.

The arrays with RFs located closest to the fixation spot (arrays 1 and 4 in monkey L, and 1, 3, 4, 6, 7, 8 and 
15 in monkey A) were mapped using a small, thin, slowly moving bar and the other arrays were mapped using 
a large, thick, fast-moving bar. Note that during stimulus presentation, data were recorded from all the arrays, 
including from arrays that were not being mapped by the stimulus. Hence, the datasets obtained using the thick 
and thin bar stimuli were combined into a unified RF map and the remaining data was discarded. The combined 
RFs for each monkey can be found in the metadata repository (Online-only Table 2).

The RF maps depict the extent of spatial coverage across the visual field. We observed a clear retinotopic 
organization that matched the locations at which the arrays were implanted on the cortical surface (Fig. 2).

https://doi.org/10.1038/s41597-022-01180-1


1 1Scientific Data |            (2022) 9:77  | https://doi.org/10.1038/s41597-022-01180-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
Identification of array and channel number. As described in the Methods, of the 16 Utah arrays, 14 
were implanted in V1 and 2 in V4. Figure 2a shows the location of implantation in the visual cortex for each of 
the 16 arrays. Each Utah array consisted of 64 electrodes, and each NSP recorded the signals obtained from two 
arrays, i.e. 128 channels (see the section, ‘Data collection’). Each electrode was assigned a unique global identifier 
from 1 to 1024. To link the global identity of individual channels with the numbering within an array (out of 64) 
and the numbering within an NSP (out of 128 channels) we generated look-up tables (LUTs) for each monkey. 
Each row in the table represents a single electrode. For each electrode the global (out of 1024), within-NSP (out 
of 128) and within-array (out of 64) channel indices are indicated. Additionally, the NSP number (out of 8), array 
number (out of 16) and cortical area (V1 or V4) are specified. These tables allow the unique identification of the 
electrodes across indexing systems.

Fig. 7 (a,c,e) Channel signal-to-noise ratio (SNR) from an example session for each monkey, shown on a 
stylized schematic of the arrays on the cortex. Channels with SNR values < 2 are marked with an ‘X’. Top: 
histogram showing the distribution of SNR values and pie plot showing the proportion of electrodes with 
SNR > 2. (b,d,f) Stimulus-evoked response timing of two sample SNR sessions, measured as the time at which 
the trial-averaged MUAe signal exceeds 2 SDs of the baseline (300 ms prior to stimulus onset) for at least 5 
consecutive time steps (5 ms in the 1-kHz sampling of MUAe signals). Channels that exhibited a response too 
early (<20 ms) or too late (>150 ms), or had no response at all, are shown in gray (these channels often had SNR 
<2). Panels (a,b) show data from session L_SNR_090817 in monkey L; (c,d) from session A_SNR_150817 in 
monkey A; and (e,f) from session A_SNR_041018 in monkey A. Note that the resting state data in monkey A 
were recorded several months after surgical implantation of the electrodes, by which time the data quality had 
decreased (c,d). Hence, we provide an additional, stand-alone checkerboard stimulation dataset, session A_
SNR_041018 (e,f) which was obtained at an earlier date (when the SNR was high on the majority of channels) 
and does not have a matching resting state session.
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Description of file formats. All data can be found at this GIN repository (https://doi.org/10.12751/g-node.
i20kyh)24. The raw, aligned data are provided in the proprietary Blackrock format, .ns6.

The pre-processed signals were stored as .mat and .nix (https://g-node.github.io/nix/) files; .nix files can be 
loaded using the Python Neo framework43 (https://neuralensemble.org/neo/).

Basic metadata from the recording system are saved in the proprietary Blackrock formats,.nev and.ccf. Note 
that both .nix and .mat data files (listed in Table 4) contain basic metadata; however, for the complete metadata, 
the metadata files (listed in Online-only Table 2) should be used. All additional metadata files are provided in 
various machine- and human-readable formats, such as .txt, .xls, .csv and .mat. Metadata were diverse and orig-
inated from different sources, such as the experimental equipment, subject specifications, electrode identifiers, 
signal quality (SNR), receptive fields (RFs), etc. All metadata were organized into a single unified hierarchi-
cal structure, using the open metadata markup language (odML)44 (https://g-node.github.io/python-odml/), 
a human- and machine-readable file format for reproducible metadata management in electrophysiology. The 
raw metadata were processed with odMLtables45 (https://odmltables.readthedocs.io) and custom Python scripts. 
The generated metadata files are listed in Online-only Table 2, all of which are integrated into a single odML file 
per session.

technical Validation
Impedance measurements. Post-implantation, electrode impedance was measured at 1 kHz using the 
Impedance Tester function in the Blackrock Central Software Suite. These measurements were carried out in the 
same month that the resting state data were collected, yielding one text file (.txt) per NSP.

These values were subsequently combined across the eight raw data files (one per NSP), yielding a single. csv 
file that contains impedance data across all 1024 channels. The impedances were also included in the hierarchi-
cally organized odML metadata files.

eye closure validation. During the resting state sessions, eye pupil diameter and position were tracked 
using an infrared camera. The monkeys were head fixed throughout the recordings, and the pupil was within sight 
of the camera at all times, as verified by inspection of the camera feed by an experimenter. To identify the time 
points with eye closure, we set a threshold for the voltage obtained in the readings for pupil diameter. We further 
validated this method of threshold setting by comparing levels of cortical activity observed during eye closure and 
eye opening, and found that activity in the visual cortex was typically higher when the monkeys’ eyes were open 
than when they were closed.

To carry out this validation, we identified the electrode array that yielded the highest signal-to-noise ratios 
across all 64 electrodes (monkey L: array 11; monkey A: array 10). We calculated the mean MUAe across elec-
trodes on this array, as a measure of on-going neuronal activity. We observed a high correlation between activ-
ity levels and the status of the eye, indicating that eye opening was accompanied by an increase in V1 activity 
(Fig. 6a,d), and verifying the accuracy of the eye closure analysis.

Cross-talk removal. An additional analysis was performed on the resting state data in order to assess 
whether spurious correlations were present. Unexpectedly high correlations could originate from the induc-
tion of current via strong external electromagnetic radiation recorded by the electrodes (e.g. power line noise or 

Raw and aligned neuronal data

Format File naming convention
Number of 
files Description

.ns6 NSPX_aligned.ns6 8 per session Temporally aligned raw neuronal data files. The length of the data segments is 
the same across NSPs.

.nev
NSPX_aligned.nev 8 per session Temporally aligned event data files. The duration is the same as in the NS6 files.

NSPX.nev 8 per session Raw event data files. The duration is the same as in the NS6 files.

Eye signal data

.mat aligned_eye_data.mat 1 per resting 
state session

Eye position in horizontal (X) and vertical (Y) coordinates, and pupil diameter 
in horizontal (X) and vertical (Y) coordinates. Recorded with a sampling rate of 
30 kHz, aligned with the neuronal data.

.nix aligned_eye_data.nix 1 per resting 
state session

Eye position in horizontal (X) and vertical (Y) coordinates, and pupil diameter 
in horizontal (X) and vertical (Y) coordinates. Recorded with a sampling rate of 
30 kHz, aligned with the neuronal data. The file includes all relevant metadata in 
the form of annotation dictionaries.

Processed neuronal data

.mat NSPX_arrayY_MUAe.mat 16 per session Temporally aligned MUAe neuronal data files, with a sampling rate of 1 kHz.

.nix NSPX_arrayY_MUAe.nix 16 per session
Temporally aligned MUAe neuronal data files, with a sampling rate of 1 kHz. 
The file includes all relevant metadata in the form of annotation dictionaries 
and event epochs.

.mat NSPX_arrayY_LFP.mat 16 per session Temporally aligned LFP neuronal data files, with a sampling rate of 500 Hz.

.nix NSPX_arrayY_LFP.nix 16 per session
Temporally aligned LFP neuronal data files, with a sampling rate of 500 Hz. The 
file includes all relevant metadata in the form of annotation dictionaries and 
event epochs.

Table 4. Available neuronal and eye signal data files. In the naming conventions, ‘X’ represents the NSP number 
(1 to 8) and ‘Y’ represents the array number (1 to 16).
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telecommunications devices) or could be caused by electrical short circuits between two or more electrodes, i.e. 
cross-talk.

Cross-talk can arise when electrodes physically touch each other due to mechanical bending during or after 
surgery, or when currents arise between cables due to a breach in electrical insulation of channels at any point 
along the processing stream up to the conversion of data from analog to digital. We examined the data for spu-
rious correlations, as they could potentially contaminate MUAe signals. Determining the precise source of such 
spurious correlations is beyond the scope of this publication.

In order to detect cross-talk artifacts in the data, we band-passed the raw signals at 250–9000 Hz. We then 
removed the first principal component for the channels that shared a common reference wire, roughly corre-
sponding to the mean of the signals. Threshold crossing events were extracted as described by Quiroga et al.46, 
with a threshold multiplier parameter of 5. Next, we counted synchronous threshold crossings at sampling reso-
lution and in adjacent sampling bins (1/30 ms). The complexity of a synchronous event was defined as the num-
ber of near-simultaneous threshold crossings across electrodes47. These synchronous events could also occur in 
the data by chance. However, in some cases, the analog signals had the same shape across numerous electrodes, 
indicating that these synchronous events were likely artifacts (see Fig. 8a for an example). These non-random 
synchronous events are termed ‘synchrofacts’ (short for synchronous artifacts)47.

Fig. 8 Detection and removal of high-frequency synchronous events. All plots display data from a single 
resting state session (L_RS_250717), which was the session with the most cross talk. (a) Raw signal of a sample 
synchrofact (complexity = 30). (b) Above-chance part of the complexity histogram for the original data (black) 
and after removing 150 electrodes with the highest synchrofact participation (SP, green). (c) Scatterplot of SP 
of each electrode versus firing rate (FR, calculated as threshold crossings per second). Each point represents a 
single electrode. As shown by the absence of a positive correlation, the SP was not biased by the FR, due to our 
method of normalising the SP by the total number of synchronous events. (d) Synchrofact participation of each 
electrode in the original data (prior to removal of 150 electrodes with high SP). Crosses (X) indicate electrodes 
with SNR < 2 and hyphens (−) indicate electrodes with FR < 0.1; these electrodes were excluded from the cross-
talk analysis. (e) For the remaining electrodes, those with a high SP were systematically removed, accompanied 
by a decrease in the largest SP that was observed across the remaining electrodes. (f) SP of each electrode after 
the removal of 150 electrodes with high SP; removed electrodes are indicated by a circle (O). (c) (d) and (f) use 
the same colour map.
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Distinguishing synchrofacts from randomly occurring synchronous events is not trivial, due to the large 
number (up to hundreds of thousands) of synchronous events, hence we examined their complexity histogram, 
i.e. the number of detected synchronous events of a given complexity. We used a one-sided Monte Carlo permu-
tation test to check whether the number of synchronous events of a given complexity was above chance level. 
We generated surrogate data (N=1000 surrogates), i.e. permutations, by uniformly dithering (±5 ms) the timing 
of the threshold crossings. The probability of obtaining a certain number of synchronous events by chance was 
estimated based on the distribution of events in the surrogate data. We found thousands of synchrofacts across 
complexity values ranging from 1 to >50 (Fig. 8b), far more than what would be expected by chance.

To distinguish synchrofacts from randomly occurring synchronous events, and to pinpoint the electrodes 
that were primarily responsible for the non-random events, complexity histograms were then calculated on an 
electrode-by-electrode basis. To provide a measure of the number of synchrofacts obtained per electrode, i.e. 
threshold crossings per second (Fig. 8c), we first tallied the number of above-chance threshold-crossing events 
for a given electrode. Electrodes with higher firing rates inevitably yield a larger number of randomly occurring 
synchronous events; to correct for this bias, we divided the number of above-chance events on each electrode 
by the total number of events seen on that electrode. We call this metric the ‘synchrofact participation’ (SP) of 
the electrode.

SP
N

N
,

(3)
aboveChance

total

∑=

where N denotes the number of synchronous events observed for a given electrode.
The SP takes a value between 0 and 1, indicating the proportion of synchronous events that were above 

chance for each electrode. Correcting by the total number of events leads to a measure of the synchrofacts per 
electrode that is not correlated to the firing rate. When mapping the cortical locations of the electrodes with high 
SP values, we found that they were grouped into several clusters (Fig. 8d). We detected synchronous artifacts in 
all three resting state sessions from monkey L. Resting state data from monkey A did not show large numbers of 
synchrofacts (likely due to the low firing rates obtained in those sessions).

The simplest approach to removing cross-talk from the data is to discard the electrodes with high SP from 
further analysis. We systematically removed electrodes with the highest SP one by one, and recalculated the 
SP and chance levels after the removal of each electrode. Our significance level was not adjusted for multiple 
comparisons, as this would lead to a high false negative rate and hinder the removal of electrodes with cross-talk 
from the dataset. We removed up to 250 electrodes (Fig. 8e), greatly reducing the levels of cross-talk in the data 
(Fig. 8f). Note that while the electrode removal process eliminates a large portion of the spurious correlations, it 
does not eliminate artifacts that occur sporadically or at low rates on a given electrode.

We provide a recommended list of electrodes to discard, and the order of their removal. The precise number 
of electrodes to be discarded can be adjusted as needed by data users, depending on the particular use case. 
Detailed plots depicting the complexity histograms and electrode SP for all the resting state sessions are available 
in our data repository.

A reference implementation for synchrofact detection was included in version 0.10.0 of the Electrophysiology 
Analysis Toolkit26 (Elephant, RRID:SCR_003833, https://elephant.readthedocs.io). The full workflow used for 
systematic electrode removal was implemented with Python and can be found in the data respository.

Code availability
All scripts used for the processing of data and our preliminary analyses are available alongside the data at https://
gin.g-node.org/NIN/V1_V4_1024_electrode_resting_state_data, in the ‘code’ folder. All experiment control 
scripts are listed in Table 2 and the data processing scripts are listed in Online-only Table 1.

Matlab version R2015b, Python version 3.7 and Snakemake version 5.8.1 were used. The only Matlab depend-
ency was the NPMK toolbox (version 5.0, Blackrock Microsystems), a copy of which is included in the data 
repository.

Direct Python dependencies include neo 0.9.0, nixio 1.5.0 elephant 0.10.0, odml 1.4.5 and odmltables 1.0. A 
full list of all Python dependencies and the specific versions used can be found in the Python environment speci-
fications, along with the Python scripts (Online-only Table 1).
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