000906758 001__ 906758
000906758 005__ 20230404102002.0
000906758 0247_ $$2doi$$a10.3389/fctls.2022.835919
000906758 0247_ $$2Handle$$a2128/30849
000906758 0247_ $$2altmetric$$aaltmetric:124736499
000906758 037__ $$aFZJ-2022-01673
000906758 082__ $$a540
000906758 1001_ $$0P:(DE-Juel1)171612$$aGerlach, Tim$$b0
000906758 245__ $$aPhoto-Regulation of Enzyme Activity: The Inactivation of a Carboligase with Genetically Encoded Photosensitizer Fusion Tags
000906758 260__ $$aLausanne$$bFrontiers Media$$c2022
000906758 3367_ $$2DRIVER$$aarticle
000906758 3367_ $$2DataCite$$aOutput Types/Journal article
000906758 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667826111_12038
000906758 3367_ $$2BibTeX$$aARTICLE
000906758 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906758 3367_ $$00$$2EndNote$$aJournal Article
000906758 520__ $$aGenetically encoded photosensitizers are able to produce reactive oxygen species upon illumination and are exploited in a wide range of applications, especially in the medical field. In this work, we envisioned to further apply these genetically encoded photosensitizers for the light-dependent control of single enzymes in multi-step biocatalysis. One of the challenges in the application of several enzymes in a cascade is the unwanted cross-reactivity of these biocatalysts on reaction intermediates when all enzymes are simultaneously present in the reaction. As one strategy to address this issue, we investigated whether the introduction of genetically encoded photosensitizers as fusion tags would allow the selective inactivation of enzymes after successful transformation by simply turning on light. We tested five different photosensitizers as molecular biological fusion tags to inactivate the pyruvate decarboxylase variant E469G/W543H from Acetobacter pasteurianus. Dimeric photosensitizer tags, like the flavin-binding fluorescent proteins from Bacillus subtilis and Pseudomonas putida showed the tendency to form insoluble protein aggregates in combination with the tetrameric carboligase. Enzyme activity was, to some extent, retained in these aggregates, but the handling of the insoluble aggregates proved to be unfeasible. Monomeric photosensitizer tags appeared to be much more suitable when fused to the tetrameric enzyme. In the dark, the singlet oxygen photosensitizing protein (SOPP3)-tagged carboligase retained 79% of its activity as compared to the unfused enzyme. Upon blue light exposure, the SOPP3 tag showed the best specific inactivation and enabled complete inactivation of the carboligase within 30 min. SOPP3 is thus seen as a promising photosensitizer tag to be applied in future multi-step enzyme cascades to overcome the challenge of cross-reactivity.
000906758 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000906758 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906758 7001_ $$0P:(DE-Juel1)178701$$aSchain, Jendrik$$b1
000906758 7001_ $$0P:(DE-Juel1)176704$$aSöltl, Simone$$b2
000906758 7001_ $$0P:(DE-Juel1)180979$$avan Schie, Morten M. C. H.$$b3
000906758 7001_ $$0P:(DE-Juel1)167181$$aHilgers, Fabienne$$b4$$ufzj
000906758 7001_ $$0P:(DE-Juel1)174200$$aBitzenhofer, Nora L.$$b5$$ufzj
000906758 7001_ $$0P:(DE-Juel1)131426$$aDrepper, Thomas$$b6$$ufzj
000906758 7001_ $$0P:(DE-Juel1)144643$$aRother, Dörte$$b7$$eCorresponding author$$ufzj
000906758 773__ $$0PERI:(DE-600)3106173-4$$a10.3389/fctls.2022.835919$$gVol. 2, p. 835919$$p835919$$tFrontiers in catalysis$$v2$$x2673-7841$$y2022
000906758 8564_ $$uhttps://juser.fz-juelich.de/record/906758/files/fctls-02-835919.pdf$$yOpenAccess
000906758 8767_ $$d2022-12-27$$eAPC$$jDeposit$$z1615 USD
000906758 909CO $$ooai:juser.fz-juelich.de:906758$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000906758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167181$$aForschungszentrum Jülich$$b4$$kFZJ
000906758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174200$$aForschungszentrum Jülich$$b5$$kFZJ
000906758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131426$$aForschungszentrum Jülich$$b6$$kFZJ
000906758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144643$$aForschungszentrum Jülich$$b7$$kFZJ
000906758 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000906758 9141_ $$y2022
000906758 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906758 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906758 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-02-17T16:14:42Z
000906758 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-02-17T16:14:42Z
000906758 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-02-17T16:14:42Z
000906758 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906758 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906758 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000906758 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000906758 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
000906758 9801_ $$aFullTexts
000906758 980__ $$ajournal
000906758 980__ $$aVDB
000906758 980__ $$aI:(DE-Juel1)IBG-1-20101118
000906758 980__ $$aI:(DE-Juel1)IMET-20090612
000906758 980__ $$aUNRESTRICTED
000906758 980__ $$aAPC