001     906758
005     20230404102002.0
024 7 _ |a 10.3389/fctls.2022.835919
|2 doi
024 7 _ |a 2128/30849
|2 Handle
024 7 _ |a altmetric:124736499
|2 altmetric
037 _ _ |a FZJ-2022-01673
082 _ _ |a 540
100 1 _ |a Gerlach, Tim
|0 P:(DE-Juel1)171612
|b 0
245 _ _ |a Photo-Regulation of Enzyme Activity: The Inactivation of a Carboligase with Genetically Encoded Photosensitizer Fusion Tags
260 _ _ |a Lausanne
|c 2022
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1667826111_12038
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Genetically encoded photosensitizers are able to produce reactive oxygen species upon illumination and are exploited in a wide range of applications, especially in the medical field. In this work, we envisioned to further apply these genetically encoded photosensitizers for the light-dependent control of single enzymes in multi-step biocatalysis. One of the challenges in the application of several enzymes in a cascade is the unwanted cross-reactivity of these biocatalysts on reaction intermediates when all enzymes are simultaneously present in the reaction. As one strategy to address this issue, we investigated whether the introduction of genetically encoded photosensitizers as fusion tags would allow the selective inactivation of enzymes after successful transformation by simply turning on light. We tested five different photosensitizers as molecular biological fusion tags to inactivate the pyruvate decarboxylase variant E469G/W543H from Acetobacter pasteurianus. Dimeric photosensitizer tags, like the flavin-binding fluorescent proteins from Bacillus subtilis and Pseudomonas putida showed the tendency to form insoluble protein aggregates in combination with the tetrameric carboligase. Enzyme activity was, to some extent, retained in these aggregates, but the handling of the insoluble aggregates proved to be unfeasible. Monomeric photosensitizer tags appeared to be much more suitable when fused to the tetrameric enzyme. In the dark, the singlet oxygen photosensitizing protein (SOPP3)-tagged carboligase retained 79% of its activity as compared to the unfused enzyme. Upon blue light exposure, the SOPP3 tag showed the best specific inactivation and enabled complete inactivation of the carboligase within 30 min. SOPP3 is thus seen as a promising photosensitizer tag to be applied in future multi-step enzyme cascades to overcome the challenge of cross-reactivity.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schain, Jendrik
|0 P:(DE-Juel1)178701
|b 1
700 1 _ |a Söltl, Simone
|0 P:(DE-Juel1)176704
|b 2
700 1 _ |a van Schie, Morten M. C. H.
|0 P:(DE-Juel1)180979
|b 3
700 1 _ |a Hilgers, Fabienne
|0 P:(DE-Juel1)167181
|b 4
|u fzj
700 1 _ |a Bitzenhofer, Nora L.
|0 P:(DE-Juel1)174200
|b 5
|u fzj
700 1 _ |a Drepper, Thomas
|0 P:(DE-Juel1)131426
|b 6
|u fzj
700 1 _ |a Rother, Dörte
|0 P:(DE-Juel1)144643
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.3389/fctls.2022.835919
|g Vol. 2, p. 835919
|0 PERI:(DE-600)3106173-4
|p 835919
|t Frontiers in catalysis
|v 2
|y 2022
|x 2673-7841
856 4 _ |u https://juser.fz-juelich.de/record/906758/files/fctls-02-835919.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906758
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167181
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)174200
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144643
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-02-17T16:14:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-02-17T16:14:42Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-02-17T16:14:42Z
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21