000906761 001__ 906761
000906761 005__ 20231116095326.0
000906761 0247_ $$2doi$$a10.1371/journal.pcbi.1009223
000906761 0247_ $$2ISSN$$a1553-734X
000906761 0247_ $$2ISSN$$a1553-7358
000906761 0247_ $$2Handle$$a2128/30850
000906761 0247_ $$2altmetric$$aaltmetric:124218870
000906761 0247_ $$2pmid$$a35255090
000906761 0247_ $$2WOS$$aWOS:001084616000001
000906761 037__ $$aFZJ-2022-01675
000906761 082__ $$a610
000906761 1001_ $$0P:(DE-Juel1)178687$$aHelleckes, Laura Marie$$b0$$eCorresponding author
000906761 245__ $$aBayesian calibration, process modeling and uncertainty quantification in biotechnology
000906761 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2022
000906761 3367_ $$2DRIVER$$aarticle
000906761 3367_ $$2DataCite$$aOutput Types/Journal article
000906761 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648121337_1005
000906761 3367_ $$2BibTeX$$aARTICLE
000906761 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906761 3367_ $$00$$2EndNote$$aJournal Article
000906761 520__ $$aHigh-throughput experimentation has revolutionized data-driven experimental sciences and opened the door to the application of machine learning techniques. Nevertheless, the quality of any data analysis strongly depends on the quality of the data and specifically the degree to which random effects in the experimental data-generating process are quantified and accounted for. Accordingly calibration, i.e. the quantitative association between observed quantities and measurement responses, is a core element of many workflows in experimental sciences.Particularly in life sciences, univariate calibration, often involving non-linear saturation effects, must be performed to extract quantitative information from measured data. At the same time, the estimation of uncertainty is inseparably connected to quantitative experimentation. Adequate calibration models that describe not only the input/output relationship in a measurement system but also its inherent measurement noise are required. Due to its mathematical nature, statistically robust calibration modeling remains a challenge for many practitioners, at the same time being extremely beneficial for machine learning applications.In this work, we present a bottom-up conceptual and computational approach that solves many problems of understanding and implementing non-linear, empirical calibration modeling for quantification of analytes and process modeling. The methodology is first applied to the optical measurement of biomass concentrations in a high-throughput cultivation system, then to the quantification of glucose by an automated enzymatic assay. We implemented the conceptual framework in two Python packages, calibr8 and murefi, with which we demonstrate how to make uncertainty quantification for various calibration tasks more accessible. Our software packages enable more reproducible and automatable data analysis routines compared to commonly observed workflows in life sciences.Subsequently, we combine the previously established calibration models with a hierarchical Monod-like ordinary differential equation model of microbial growth to describe multiple replicates of Corynebacterium glutamicum batch cultures. Key process model parameters are learned by both maximum likelihood estimation and Bayesian inference, highlighting the flexibility of the statistical and computational framework.
000906761 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000906761 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906761 7001_ $$0P:(DE-Juel1)174594$$aOsthege, Michael$$b1
000906761 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b2
000906761 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b3
000906761 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b4$$eCorresponding author
000906761 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1009223$$gVol. 18, no. 3, p. e1009223 -$$n3$$pe1009223 -$$tPLoS Computational Biology$$v18$$x1553-734X$$y2022
000906761 8564_ $$uhttps://juser.fz-juelich.de/record/906761/files/journal.pcbi.1009223.pdf$$yOpenAccess
000906761 909CO $$ooai:juser.fz-juelich.de:906761$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178687$$aForschungszentrum Jülich$$b0$$kFZJ
000906761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174594$$aForschungszentrum Jülich$$b1$$kFZJ
000906761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b2$$kFZJ
000906761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b3$$kFZJ
000906761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b4$$kFZJ
000906761 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000906761 9141_ $$y2022
000906761 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906761 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000906761 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000906761 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000906761 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000906761 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906761 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000906761 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2021$$d2022-11-18
000906761 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000906761 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000906761 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-04-12T10:24:26Z
000906761 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-04-12T10:24:26Z
000906761 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2022-04-12T10:24:26Z
000906761 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000906761 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000906761 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000906761 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000906761 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-18
000906761 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-18
000906761 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000906761 980__ $$ajournal
000906761 980__ $$aVDB
000906761 980__ $$aUNRESTRICTED
000906761 980__ $$aI:(DE-Juel1)IBG-1-20101118
000906761 9801_ $$aFullTexts