000906789 001__ 906789
000906789 005__ 20230307161513.0
000906789 0247_ $$2doi$$a10.1038/s41598-022-07860-7
000906789 0247_ $$2Handle$$a2128/31103
000906789 0247_ $$2altmetric$$aaltmetric:124651701
000906789 0247_ $$2pmid$$apmid:35288595
000906789 0247_ $$2WOS$$aWOS:000769065000009
000906789 037__ $$aFZJ-2022-01696
000906789 082__ $$a600
000906789 1001_ $$0P:(DE-Juel1)178756$$aWischnewski, Kevin J.$$b0$$ufzj
000906789 245__ $$aTowards an efficient validation of dynamical whole-brain models
000906789 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2022
000906789 3367_ $$2DRIVER$$aarticle
000906789 3367_ $$2DataCite$$aOutput Types/Journal article
000906789 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673333099_23592
000906789 3367_ $$2BibTeX$$aARTICLE
000906789 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906789 3367_ $$00$$2EndNote$$aJournal Article
000906789 520__ $$aSimulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal selection of parameters, which determine the model’s capability to replicate empirical data. Since the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, we evaluate several alternative approaches to maximize the correspondence between simulated and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO). To compare them, we employ an ensemble of coupled phase oscillators built upon individual empirical structural connectivity of 105 healthy subjects. We determine optimal model parameters from two- and three-dimensional parameter spaces and show that the overall fitting quality of the tested methods can compete with the GS. There are, however, marked differences in the required computational resources and stability properties, which we also investigate before proposing CMAES and BO as efficient alternatives to a high-dimensional GS. For the three-dimensional case, these methods generated similar results as the GS, but within less than 6% of the computation time. Our results contribute to an efficient validation of models for personalized simulations of brain dynamics.
000906789 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x0
000906789 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000906789 536__ $$0G:(EU-Grant)826421$$aVirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421)$$c826421$$fH2020-SC1-DTH-2018-1$$x2
000906789 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x3
000906789 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906789 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b1$$ufzj
000906789 7001_ $$0P:(DE-HGF)0$$aJirsa, Viktor K.$$b2
000906789 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b3$$eCorresponding author
000906789 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-022-07860-7$$gVol. 12, no. 1, p. 4331$$n1$$p4331$$tScientific reports$$v12$$x2045-2322$$y2022
000906789 8564_ $$uhttps://juser.fz-juelich.de/record/906789/files/Manuscript_Towards_an_Efficient_Validation.pdf$$yOpenAccess
000906789 8767_ $$8SN-2022-00413-b$$92022-10-07$$a1200185158$$d2022-11-21$$eAPC$$jZahlung erfolgt$$lDEAL: Springer
000906789 909CO $$ooai:juser.fz-juelich.de:906789$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000906789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178756$$aForschungszentrum Jülich$$b0$$kFZJ
000906789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000906789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b3$$kFZJ
000906789 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000906789 9141_ $$y2022
000906789 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906789 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000906789 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000906789 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000906789 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000906789 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906789 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000906789 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000906789 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000906789 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-08T09:38:07Z
000906789 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-08T09:38:07Z
000906789 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-08T09:38:07Z
000906789 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000906789 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000906789 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000906789 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000906789 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000906789 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-09
000906789 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000906789 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906789 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906789 920__ $$lyes
000906789 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000906789 980__ $$ajournal
000906789 980__ $$aVDB
000906789 980__ $$aI:(DE-Juel1)INM-7-20090406
000906789 980__ $$aAPC
000906789 980__ $$aUNRESTRICTED
000906789 9801_ $$aAPC
000906789 9801_ $$aFullTexts