Hauptseite > Publikationsdatenbank > Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity > print |
001 | 906797 | ||
005 | 20230123110607.0 | ||
024 | 7 | _ | |a 10.1126/sciadv.abj1812 |2 doi |
024 | 7 | _ | |a 2128/30862 |2 Handle |
024 | 7 | _ | |a altmetric:124891769 |2 altmetric |
024 | 7 | _ | |a pmid:35294251 |2 pmid |
024 | 7 | _ | |a WOS:000770280500003 |2 WOS |
037 | _ | _ | |a FZJ-2022-01698 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Li, Jingwei |0 P:(DE-Juel1)164828 |b 0 |e Corresponding author |
245 | _ | _ | |a Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity |
260 | _ | _ | |a Washington, DC [u.a.] |c 2022 |b Assoc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648131316_22581 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Algorithmic biases that favor majority populations pose a key challenge to the application of machine learning for precision medicine. Here, we assessed such bias in prediction models of behavioral phenotypes from brain functional magnetic resonance imaging. We examined the prediction bias using two independent datasets (preadolescent versus adult) of mixed ethnic/racial composition. When predictive models were trained on data dominated by white Americans (WA), out-of-sample prediction errors were generally higher for African Americans (AA) than for WA. This bias toward WA corresponds to more WA-like brain-behavior association patterns learned by the models. When models were trained on AA only, compared to training only on WA or an equal number of AA and WA participants, AA prediction accuracy improved but stayed below that for WA. Overall, the results point to the need for caution and further research regarding the application of current brain-behavior prediction models in minority populations. |
536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Bzdok, Danilo |0 P:(DE-Juel1)136848 |b 1 |
700 | 1 | _ | |a Chen, Jianzhong |0 0000-0001-5676-979X |b 2 |
700 | 1 | _ | |a Tam, Angela |0 0000-0001-6752-5707 |b 3 |
700 | 1 | _ | |a Ooi, Leon Qi Rong |0 0000-0002-3546-4580 |b 4 |
700 | 1 | _ | |a Holmes, Avram J. |0 0000-0001-6583-803X |b 5 |
700 | 1 | _ | |a Ge, Tian |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Patil, Kaustubh R. |0 P:(DE-Juel1)172843 |b 7 |
700 | 1 | _ | |a Jabbi, Mbemba |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 9 |
700 | 1 | _ | |a Yeo, B. T. Thomas |0 0000-0002-0119-3276 |b 10 |e Corresponding author |
700 | 1 | _ | |a Genon, Sarah |0 P:(DE-Juel1)161225 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1126/sciadv.abj1812 |g Vol. 8, no. 11, p. eabj1812 |0 PERI:(DE-600)2810933-8 |n 11 |p eabj1812 |t Science advances |v 8 |y 2022 |x 2375-2548 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906797/files/Invoice_APC600284027.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/906797/files/sciadv.abj1812.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:906797 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)164828 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)172843 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)161225 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI ADV : 2021 |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-09-20T13:50:30Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-09-20T13:50:30Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-09-20T13:50:30Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-08 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-08 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SCI ADV : 2021 |d 2022-11-08 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|