000906798 001__ 906798
000906798 005__ 20230123110607.0
000906798 0247_ $$2doi$$a10.3390/metabo12030257
000906798 0247_ $$2pmid$$a35323700
000906798 0247_ $$2WOS$$aWOS:000774162600001
000906798 037__ $$aFZJ-2022-01699
000906798 082__ $$a540
000906798 1001_ $$0P:(DE-Juel1)176811$$aReiter, Alexander$$b0$$eCorresponding author
000906798 245__ $$aMetabolic Footprinting of Microbial Systems Based on Comprehensive In Silico Predictions of MS/MS Relevant Data
000906798 260__ $$aBasel$$bMDPI$$c2022
000906798 3367_ $$2DRIVER$$aarticle
000906798 3367_ $$2DataCite$$aOutput Types/Journal article
000906798 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648029994_20837
000906798 3367_ $$2BibTeX$$aARTICLE
000906798 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906798 3367_ $$00$$2EndNote$$aJournal Article
000906798 520__ $$aMetabolic footprinting represents a holistic approach to gathering large-scale metabolomic information of a given biological system and is, therefore, a driving force for systems biology and bioprocess development. The ongoing development of automated cultivation platforms increases the need for a comprehensive and rapid profiling tool to cope with the cultivation throughput. In this study, we implemented a workflow to provide and select relevant metabolite information from a genome-scale model to automatically build an organism-specific comprehensive metabolome analysis method. Based on in-house literature and predicted metabolite information, the deduced metabolite set was distributed in stackable methods for a chromatography-free dilute and shoot flow-injection analysis multiple-reaction monitoring profiling approach. The workflow was used to create a method specific for Saccharomyces cerevisiae, covering 252 metabolites with 7 min/sample. The method was validated with a commercially available yeast metabolome standard, identifying up to 74.2% of the listed metabolites. As a first case study, three commercially available yeast extracts were screened with 118 metabolites passing quality control thresholds for statistical analysis, allowing to identify discriminating metabolites. The presented methodology provides metabolite screening in a time-optimised way by scaling analysis time to metabolite coverage and is open to other microbial systems simply starting from genome-scale model information.
000906798 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000906798 588__ $$aDataset connected to DataCite
000906798 7001_ $$0P:(DE-Juel1)178691$$aAsgari, Jian$$b1
000906798 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b2
000906798 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b3
000906798 773__ $$0PERI:(DE-600)2662251-8$$a10.3390/metabo12030257$$gVol. 12, no. 3, p. 257 -$$n3$$p257 -$$tMetabolites$$v12$$x2218-1989$$y2022
000906798 8564_ $$uhttps://juser.fz-juelich.de/record/906798/files/metabolites-12-00257.pdf$$yRestricted
000906798 909CO $$ooai:juser.fz-juelich.de:906798$$pVDB
000906798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176811$$aForschungszentrum Jülich$$b0$$kFZJ
000906798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b2$$kFZJ
000906798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b3$$kFZJ
000906798 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000906798 9141_ $$y2022
000906798 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-04
000906798 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906798 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000906798 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906798 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000906798 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000906798 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETABOLITES : 2021$$d2022-11-10
000906798 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10
000906798 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10
000906798 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-21T17:46:23Z
000906798 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-21T17:46:23Z
000906798 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-21T17:46:23Z
000906798 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10
000906798 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10
000906798 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-10
000906798 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMETABOLITES : 2021$$d2022-11-10
000906798 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000906798 980__ $$ajournal
000906798 980__ $$aVDB
000906798 980__ $$aI:(DE-Juel1)IBG-1-20101118
000906798 980__ $$aUNRESTRICTED