Home > Publications database > FAIRly big: A framework for computationally reproducible processing of large-scale data > print |
001 | 906802 | ||
005 | 20230711152030.0 | ||
024 | 7 | _ | |2 doi |a 10.1038/s41597-022-01163-2 |
024 | 7 | _ | |2 ISSN |a 2052-4436 |
024 | 7 | _ | |2 ISSN |a 2052-4463 |
024 | 7 | _ | |2 Handle |a 2128/31105 |
024 | 7 | _ | |2 altmetric |a altmetric:124516339 |
024 | 7 | _ | |2 pmid |a pmid:35277501 |
024 | 7 | _ | |2 WOS |a WOS:000767813100012 |
037 | _ | _ | |a FZJ-2022-01700 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |0 P:(DE-Juel1)178612 |a Wagner, Adina S. |b 0 |e Corresponding author |
245 | _ | _ | |a FAIRly big: A framework for computationally reproducible processing of large-scale data |
260 | _ | _ | |a London |b Nature Publ. Group |c 2022 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1674022337_8141 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Large-scale datasets present unique opportunities to perform scientific investigations with unprecedented breadth. However, they also pose considerable challenges for the findability, accessibility, interoperability, and reusability (FAIR) of research outcomes due to infrastructure limitations, data usage constraints, or software license restrictions. Here we introduce a DataLad-based, domain-agnostic framework suitable for reproducible data processing in compliance with open science mandates. The framework attempts to minimize platform idiosyncrasies and performance-related complexities. It affords the capture of machine-actionable computational provenance records that can be used to retrace and verify the origins of research outcomes, as well as be re-executed independent of the original computing infrastructure. We demonstrate the framework's performance using two showcases: one highlighting data sharing and transparency (using the studyforrest.org dataset) and another highlighting scalability (using the largest public brain imaging dataset available: the UK Biobank dataset). |
536 | _ | _ | |0 G:(DE-HGF)POF4-5254 |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-Juel1)178653 |a Waite, Laura K. |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)184655 |a Wierzba, Małgorzata |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)131684 |a Hoffstaedter, Felix |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)177088 |a Waite, Alexander Q. |b 4 |
700 | 1 | _ | |0 P:(DE-Juel1)178613 |a Poldrack, Benjamin |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)131678 |a Eickhoff, Simon B. |b 6 |
700 | 1 | _ | |0 P:(DE-Juel1)177087 |a Hanke, Michael |b 7 |
773 | _ | _ | |0 PERI:(DE-600)2775191-0 |a 10.1038/s41597-022-01163-2 |g Vol. 9, no. 1, p. 80 |n 1 |p 80 |t Scientific data |v 9 |x 2052-4436 |y 2022 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906802/files/Invoice_2676299027.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906802/files/s41597-022-01163-2.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906802 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)178612 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)178653 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)131684 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)177088 |a Forschungszentrum Jülich |b 4 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)178613 |a Forschungszentrum Jülich |b 5 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)131678 |a Forschungszentrum Jülich |b 6 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)177087 |a Forschungszentrum Jülich |b 7 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-525 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5254 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Decoding Brain Organization and Dysfunction |x 0 |
914 | 1 | _ | |y 2022 |
915 | p | c | |0 PC:(DE-HGF)0000 |2 APC |a APC keys set |
915 | p | c | |0 PC:(DE-HGF)0001 |2 APC |a Local Funding |
915 | p | c | |0 PC:(DE-HGF)0002 |2 APC |a DFG OA Publikationskosten |
915 | p | c | |0 PC:(DE-HGF)0003 |2 APC |a DOAJ Journal |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |0 StatID:(DE-HGF)1190 |2 StatID |a DBCoverage |b Biological Abstracts |d 2021-05-04 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0700 |2 StatID |a Fees |d 2021-05-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0561 |2 StatID |a Article Processing Charges |d 2021-05-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b SCI DATA : 2021 |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)0501 |2 StatID |a DBCoverage |b DOAJ Seal |d 2021-10-13T15:03:12Z |
915 | _ | _ | |0 StatID:(DE-HGF)0500 |2 StatID |a DBCoverage |b DOAJ |d 2021-10-13T15:03:12Z |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b DOAJ : Blind peer review |d 2021-10-13T15:03:12Z |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |d 2022-11-17 |
915 | _ | _ | |0 StatID:(DE-HGF)9905 |2 StatID |a IF >= 5 |b SCI DATA : 2021 |d 2022-11-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a OPENSCIENCE |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|