001     906802
005     20230711152030.0
024 7 _ |2 doi
|a 10.1038/s41597-022-01163-2
024 7 _ |2 ISSN
|a 2052-4436
024 7 _ |2 ISSN
|a 2052-4463
024 7 _ |2 Handle
|a 2128/31105
024 7 _ |2 altmetric
|a altmetric:124516339
024 7 _ |2 pmid
|a pmid:35277501
024 7 _ |2 WOS
|a WOS:000767813100012
037 _ _ |a FZJ-2022-01700
041 _ _ |a English
082 _ _ |a 500
100 1 _ |0 P:(DE-Juel1)178612
|a Wagner, Adina S.
|b 0
|e Corresponding author
245 _ _ |a FAIRly big: A framework for computationally reproducible processing of large-scale data
260 _ _ |a London
|b Nature Publ. Group
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1674022337_8141
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Large-scale datasets present unique opportunities to perform scientific investigations with unprecedented breadth. However, they also pose considerable challenges for the findability, accessibility, interoperability, and reusability (FAIR) of research outcomes due to infrastructure limitations, data usage constraints, or software license restrictions. Here we introduce a DataLad-based, domain-agnostic framework suitable for reproducible data processing in compliance with open science mandates. The framework attempts to minimize platform idiosyncrasies and performance-related complexities. It affords the capture of machine-actionable computational provenance records that can be used to retrace and verify the origins of research outcomes, as well as be re-executed independent of the original computing infrastructure. We demonstrate the framework's performance using two showcases: one highlighting data sharing and transparency (using the studyforrest.org dataset) and another highlighting scalability (using the largest public brain imaging dataset available: the UK Biobank dataset).
536 _ _ |0 G:(DE-HGF)POF4-5254
|a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)178653
|a Waite, Laura K.
|b 1
700 1 _ |0 P:(DE-Juel1)184655
|a Wierzba, Małgorzata
|b 2
700 1 _ |0 P:(DE-Juel1)131684
|a Hoffstaedter, Felix
|b 3
700 1 _ |0 P:(DE-Juel1)177088
|a Waite, Alexander Q.
|b 4
700 1 _ |0 P:(DE-Juel1)178613
|a Poldrack, Benjamin
|b 5
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, Simon B.
|b 6
700 1 _ |0 P:(DE-Juel1)177087
|a Hanke, Michael
|b 7
773 _ _ |0 PERI:(DE-600)2775191-0
|a 10.1038/s41597-022-01163-2
|g Vol. 9, no. 1, p. 80
|n 1
|p 80
|t Scientific data
|v 9
|x 2052-4436
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/906802/files/Invoice_2676299027.pdf
856 4 _ |u https://juser.fz-juelich.de/record/906802/files/s41597-022-01163-2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906802
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)178612
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)178653
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131684
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177088
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)178613
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131678
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177087
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5254
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2022
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0001
|2 APC
|a Local Funding
915 p c |0 PC:(DE-HGF)0002
|2 APC
|a DFG OA Publikationskosten
915 p c |0 PC:(DE-HGF)0003
|2 APC
|a DOAJ Journal
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2021-05-04
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2021-05-04
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2021-05-04
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SCI DATA : 2021
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2021-10-13T15:03:12Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2021-10-13T15:03:12Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
|d 2021-10-13T15:03:12Z
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b SCI DATA : 2021
|d 2022-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 _ _ |a OPENSCIENCE
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21