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FAIRly big: A framework for 
computationally reproducible 
processing of large-scale data
Adina S. Wagner   1,4 ✉, Laura K. Waite   1,4, Małgorzata Wierzba   1,2,4, Felix Hoffstaedter   1, 
Alexander Q. Waite   1, Benjamin Poldrack   1, Simon B. Eickhoff1,3 & Michael Hanke   1,3

Large-scale datasets present unique opportunities to perform scientific investigations with 
unprecedented breadth. However, they also pose considerable challenges for the findability, 
accessibility, interoperability, and reusability (FAIR) of research outcomes due to infrastructure 
limitations, data usage constraints, or software license restrictions. Here we introduce a DataLad-
based, domain-agnostic framework suitable for reproducible data processing in compliance with open 
science mandates. The framework attempts to minimize platform idiosyncrasies and performance-
related complexities. It affords the capture of machine-actionable computational provenance records 
that can be used to retrace and verify the origins of research outcomes, as well as be re-executed 
independent of the original computing infrastructure. We demonstrate the framework’s performance 
using two showcases: one highlighting data sharing and transparency (using the studyforrest.org 
dataset) and another highlighting scalability (using the largest public brain imaging dataset available: 
the UK Biobank dataset).

Introduction
The amount of data available to researchers has steadily grown, but over the past decade, a focus on diverse, 
representative samples has resulted in datasets of unprecedented size. The Wind Integration National Dataset 
(WIND) Toolkit1, CERN data (opendata.cern.ch), or NASA Earth data (earthdata.nasa.gov) are only some of 
the prominent examples of large, openly shared datasets across scientific disciplines. This development is accom-
panied by a growing awareness of the importance to make the data more findable, accessible, interoperable, 
and reusable (FAIR)2, and increasing availability of research standards and tools that facilitate data sharing and 
management3.

Though large-scale datasets present unique research opportunities, they also constitute immense chal-
lenges. Storage and computational demands strain the capabilities of even well-endowed research institutions’ 
high-performance compute (HPC) infrastructure — rendering the analysis of these datasets unaffordable using 
methods common in fields accustomed to smaller datasets (e.g. multiple copies of the data, computationally 
inefficient processing). With the growing complexity of handling large scale datasets, the trustworthiness of 
derivative data can be at stake as large-scale computations are more difficult to reproduce, comprehend, and 
verify. Yet especially in the case of large scale datasets, sharing and reusing data derivatives emerges as the most 
— or sometimes the only — viable way to extend previous work4. It minimizes duplicate efforts to perform 
resource-heavy, costly computations that also have considerable environmental impact5, and it can open up 
research on large data to scholars who do not have access to adequate computational resources. In such contexts, 
data should thus not only be as FAIR as possible, but also handled in a sustainable manner that places data shar-
ing and reuse as a priority.

The challenges of big data are particularly relevant to the life sciences, such as neuroscience or genetics, 
where datasets scale to millions of files, hundreds of terabytes6,7, acquired from tens of thousands of participants. 
Well known examples, such as the Human Connectome Project8, the Adolescent Brain Cognitive Development 
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Study (ABCD)9, or the UK Biobank (UKB) project10, contain diverse data ranging from brain imaging to genet-
ics to clinical and non-clinical measures.

In addition, computational processing of biomedical datasets is rarely fully transparent. Often, datasets con-
tain personal data, which imposes usage constraints and prohibits the open distribution of data. Thus, handling 
these datasets can only be as open as the responsible use of sensitive data permits. Moreover, common process-
ing pipelines possess considerable analytical flexibility, and many tools commonly used in biomedical research 
rely on proprietary software11, which cannot be easily shared or accessed by others. This threatens the reproduc-
ibility of results12, and their digital provenance — information about how tools, data, and actors were involved 
in the generation of a file — is often incomplete. As data processing results often multiply storage demands, the 
just-keep-everything data management approach is rendered increasingly prohibitive. This fact further impedes 
the possibility to retrace and verify the origin and provenance of research outcomes fully and transparently13, 
and hence limits the trustworthiness of the research process and its outcomes2.

Here, we present a portable, free and open source framework — built on DataLad14 and containerization 
software15 — to reproducibly process large-scale datasets. It empowers independent consumers to verify or 
reproduce the results based on machine-actionable (i.e., machine-readable, automatically re-executable) records 
of computational provenance, in an infrastructure-agnostic fashion. The framework capitalizes on established 
technology, used in conjunction with workflows from software development and workload management. Two 
use cases demonstrate different framework features and its scalability: 1) an application of a MATLAB-based, 
containerized, neuroimaging processing pipeline on big data from the UKB project16 (comprising 76 TB in 43 
million files under strict usage constraints), and 2) a showcase implementation with openly available processing 
pipeline and data that illustrates the framework’s potential for transparent sharing and reuse of reproducible 
derivatives. While one can apply the framework by following the description in this work, a bootstrapping script 
for each use case is provided that — given input dataset and processing pipeline — performs the necessary setup 
from scratch.

Results
The proposed framework employs a range of software tools for data, code, and computation manage-
ment to apply workflows from software engineering — in particular distributed development — to compu-
tational research. Specifically, it orchestrates arbitrary data processing via a lean network of interconnected, 
but self-sufficient workspaces while optimizing for portability, scalability, and automatic computational 
reproducibility.

Fig. 1  Schematic overview of the processing framework. (a) The user-facing representation of the results on a 
file system after completed processing: A lean DataLad dataset that tracks the computed results, links input data 
and pipeline, and contains actionable process provenance and location information, allowing on-demand file 
retrieval or recomputation. Depicted files are from the UK Biobank showcase. (b) Process-flowchart: First, a 
DataLad dataset links required processing components (e.g., input data, processing pipeline, additional scripts). 
Next, compute jobs are executed, if possible in parallel. Afterwards, results and provenance are aggregated 
(merged). (c) An ephemeral (short-lived) compute workspace: Each compute job creates a temporary, lean 
clone, which retrieves only relevant subsets of data, and captures the processing execution as provenance. After 
completion, results and provenance are pushed into permanent storage (see d), and the ephemeral workspace is 
purged. (d) The internal dataset representation in a RIA store: The store receives results and can contain input 
data, optionally using compressed archives (for reduced disk space/inode consumption) or encryption during 
storage and transport. It is the only place where results take up permanent disk space. If inputs are available 
from other infrastructure (external, web-accessible servers, cloud infrastructure), jobs can obtain them from 
registered sources, removing the need for duplicate storage of input data.
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To achieve this, our framework combines a range of open source software tools — distributed version con-
trol systems, containerization software, job scheduling tools, and storage solutions with optional encryption 
and compression — into a sequential workflow. A complete, schematic overview is depicted in Fig. 1 and basic 
DataLad concepts are summarized in Box 1. Three key features of this data management solution are central to 
the framework:

•	 Comprehensive data structure to track all elements of digital processing
•	 Computation in automatically bootstrapped ephemeral workspaces
•	 Process provenance capture in machine-actionable records

Box 1  Main concepts about the design and function of the framework, DataLad, and its underlying technical 
components. DataLad, integral to the processing framework, is a domain agnostic data management solu-
tion based on Git (git-scm.com) and git-annex18. It provides standard interfaces for arbitrary data transport 
methods, comprehensive process provenance capture for computational reproducibility, and the means to 
apply proven workflows from collaborative software development to the domain of data processing. More 
information on DataLad is available at datalad.org and handbook.datalad.org40

DataLad concepts

DataLad dataset DataLad’s core data structure is the dataset. On a technical level, it is a joint Git/git-annex18 
repository. Conceptually, it is an overlay data structure that is particularly suited to address data integration 
challenges. It enables users to version control files of any size or type, track and transport files in a distributed 
network of dataset clones, as well as record and re-execute actionable process provenance on the genesis of file 
content. DataLad datasets have the ability to retrieve or drop registered, remote file content on demand with 
single file granularity. This is possible based on a lean record of file identity and file availability (checksum and 
URLs) irrespective of the true file size. A user does not need to be aware of the actual download source of a 
file’s content, as precise file identity is automatically verified regardless of a particular retrieval method, and 
the specification of redundant sources is supported. These technical features enable the implementation of 
infrastructure-agnostic data retrieval and deposition logic in user code.

A clone (Git concept) is a copy of a DataLad dataset that is linked to its origin dataset and its history. The 
clones are lightweight and can typically be obtained within seconds, as they are primarily comprised of file 
identity and availability records. DataLad enables synchronization of content between clones and, hence, the 
propagation of updates.

A branch (Git concept) is an independent segment of a DataLad dataset’s history. It enables the separation of 
parallel developments based on a common starting point. Branches can encompass arbitrarily different modi-
fications of a dataset. In a typical collaborative development or parallel processing routine, changes are initially 
introduced in branches and are later consolidated by merging them into a mainline branch.

Nesting A DataLad dataset can also contain other DataLad datasets. Analog to file content, this linkage is 
implemented using a lightweight dataset identity and availability record (based on Git’s submodules). This 
nesting enables flexible (re-)use of datasets in a different context. For example, it allows for the composition of 
a project directory from precisely versioned, modular units that unambiguously link all inputs of a project to 
its outcomes. Nesting offers actionable dataset linkage at virtually no disk space cost, while providing the same 
on-demand retrieval and deposition convenience as for file content operations because DataLad can work with 
a hierarchy of nested datasets as if they are a single monolithic repository. When a DataLad dataset B is nested 
inside DataLad dataset A, we also refer to A as the superdataset and to B as a subdataset. A superdataset can 
link any number of subdatasets, and datasets can simultaneously be both super- and subdataset.

RIA store A file-system based store for DataLad datasets with minimal server-side software requirements (in 
particular no DataLad, no git-annex, and Git only for specific optional features)25. These stores offer inode 
minimization (using indexed 7-zip archives). A dataset of arbitrary size and number of files can be hosted 
while consuming fewer than 25 inodes, while nevertheless offering random read access to individual files at a 
low and constant latency independent of the actual archive size. Combined with optional file content encryp-
tion and compression, RIA (“Remote Indexed Archive”) stores are particularly suited for staging large-scale, 
sensitive data to process on HPC resources.

DataLad extension The core DataLad software is extensible via independently developed Python packages. 
We developed a custom extension, datalad-ukbiobank41 (http://docs.datalad.org/projects/ukbiobank-
docs.datalad.org/projects/ukbiobank), to use the UK Biobank (UKB) as a data source for reproducible re-
search. This extension equips DataLad with a set of commands to obtain, monitor, and restructure the UKB 
imaging data release. UKB data are tracked in DataLad datasets that can be updated whenever the UKB up-
dates or adjusts its offerings. Using a multi-branch approach, the DataLad datasets provide a BIDS-structured 
representation in addition to the UKB-native data organization, without storage duplication and with full 
provenance capture of the BIDS transformation. We also employed the datalad-container56 extension, 
which integrates container-based command execution with DataLad’s process provenance capture capabilities 
(see docs.datalad.org/projects/container for more information).
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Comprehensive data structure to track all elements of digital processing.  All files involved in 
processing are contained in DataLad datasets, a Git-repository-based data representation that streamlines data 
management, sharing, and reuse17. In our framework, such datasets have a common representation (a regular 
directory tree) familiar to users, and also have a storage representation (a RIA store) that facilitates programmatic 
data management and reduces storage demands (Fig. 1a,d).

DataLad datasets can version control files regardless of file size, and can link other DataLad datasets at pre-
cise versions in modular superdataset-subdataset relationships. Based on this feature, all processing compo-
nents, such as data, code, and computational environments in the form of software container images, can be 
uniquely and transparently identified with single file granularity across a hierarchy of linked DataLad datasets. 
Unlike purely Git-based tracking, version control and file identification are based on a cryptographic hash of 
the file content, a feature provided by the software git-annex18. More precisely, each file’s content is translated 
into a checksum, and this checksum is saved (committed) as a file content identifier into the revision history—a 
detailed record of all changes in a DataLad dataset, including their date, time, and author. Exemplary shortened 
identifiers can be found in Fig. 1. This checksum is irreversible, i.e., one cannot infer the file content based on the 
identifier, but one can verify the content of files that are present on disk. Because file content is not stored in the 
revision history, the potential to leak sensitive information is significantly reduced, while the data representation 
still allows for thorough tracking and content verification.

Computation in automatically bootstrapped ephemeral workspaces.  DataLad datasets can be 
distributed across local or remote infrastructure as lightweight, linked clones. They share their origin dataset’s 
revision history and can extend it. File content transport across this network is possible via versatile transport 
logistics that allow for local or remote data hosting. This can enable data transports on systems with too little 
available disk space for multiple copies, allow redundant storage to be configured, interoperate with hosting 
services to publish results, or reconfigure data access when remote hosting locations change—without needing to 
alter the data representation in the dataset.

With these technical features, how and where data are stored (e.g., local, encrypted storage; remote, 
cloud-based hosting) becomes orthogonal to how and where computations are performed (e.g., on-site com-
pute cluster; remote cloud-computing service). This allows our framework to bootstrap ephemeral (short-lived) 
workspaces for individual computational jobs, retrieve only relevant processing elements (e.g., subsets of input 
data), and extend the DataLad datasets’ revision history with their results and process provenance (Fig. 1c). This, 
in turn, opens the possibility for parallel and version controlled analysis progression, using a distributed network 
of temporary clones. Results and revision histories can be merged to form a full processing history, in a similar 
way to how code is collaboratively developed with distributed version control tools19. Importantly, DataLad itself 
is not a workflow engine, but can be employed for individual nodes and segments of a processing graph defined 
by other solutions like HTCondor DAGMan20, or snakemake21.

Process provenance capture in machine-actionable records.  Process provenance—how code and 
commands created results from input data in a particular computational environment—of any processing routine 
can be captured and stored in machine-readable, automatically re-executable records (Fig. 2). These records are 
created by a datalad run command for the execution of a shell command, or a container invocation by datalad 
containers-run. Users need to supply the command, a software environment, input data, and optionally which 
results should be saved as parameters. DataLad’s execution wrappers retrieve inputs, initiate command execution, 
and save results together with a provenance record. Through the use of ephemeral workspaces during provenance 
capture, the validity and completeness of provenance records is automatically tested: only declared inputs are 
retrieved, only declared outputs are saved and deposited on permanent storage.

A resulting process provenance record is identified with one unique, hash-based identifier in the revision 
history, and can subsequently be used by authorized actors to automatically retrieve required components and 
re-execute the processing, irrespective of whether the original compute infrastructure is available22. This poten-
tial for full computational reproducibility of arbitrary processing steps not only increases the trustworthiness of 
the research process per se, but permits structured investigations of result variability, and furthermore provides 
the means to rerun any analysis on new data or with updated analysis components.

Showcases.  These DataLad features offer great flexibility for transparently conducting reproducible, 
high-performance data processing in a wide variety of computational environments. In two concrete showcases 
we next highlight 1) the scalability of this approach, and 2) complete transparency and reproducibility of this data 
processing method, when combined with open data and open source tools.

Use case: large-scale medical imaging data processing.  To demonstrate the framework’s scalability, 
we conducted containerized analyses on one of the largest brain imaging datasets, the UKB imaging data. The 
strain that this dataset places on computational hardware is considerable both in terms of disk space usage (i.e., 
the amount of data that a hard drive can store) and inode usage (i.e., the number of files that a file system can 
index). To show how the framework can mitigate hardware limitations, we processed the dataset on two different 
infrastructures, an HPC system with inode constraints that preclude storage of the full number of files, and a high 
throughput computing (HTC) system with disk space limitations that preclude data duplication. In doing so, 
we assessed if the framework can be used across different infrastructures, investigated result variability between 
two recomputations of the pipeline, and probed the framework’s features under distribution restrictions of both 
the data and the MATLAB-based software component. Finally, in order to demonstrate that the framework can 
capture and re-execute complete process provenance, we also recomputed individual results on a personal laptop.
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As a first step, we prepared input data and computational pipeline. We created a Singularity container 
with a pipeline to perform voxel-based morphometry (VBM)23 on individual T1-weighted MRI images based 
on the Computational Anatomy Toolbox (CAT)24. We stored UKB data in archives in a DataLad RIA store25 
(Fig. 1d) to mitigate disk-space and inode limitations on the two different systems. The store comprised 42,715 
BIDS-structured26 DataLad datasets, one per study participant, that were jointly tracked by a single additional 
superdataset (UKB-BIDS; “Data” in Fig. 3). In total, the domain-agnostic data representation in the store hosted 76 
TB of version-controlled data with 43 million individually accessible files while consuming less than 940k inodes.

Next, we assembled a single DataLad dataset to capture all processing inputs and outputs ("Results" in 
Fig. 3). It initially tracked: 1) the UKB-BIDS DataLad dataset; 2) a DataLad dataset providing the container-
ized CAT pipeline; 3) the compute job implementation responsible for bootstrapping a temporary workspace, 
performing a parameterized execution of the pipeline, capturing its outputs, and depositing results in the RIA 
store (see Listing 1 for a simplified version); and 4) the job scheduling specifications for SLURM27 (used on the 
HPC system) and HTCondor20 (used on the HTC system). Despite the total size of all tracked components, 
the pre-execution state of this dataset was extremely lean, as only availability (a URL) and joint identity (single 
checksum) information on the linked datasets is stored, and all other information is contained in the linked data-
sets themselves. This also implies that the DataLad dataset tracking the computational outputs is not automati-
cally encumbered with sensitive information, even though it precisely identifies the medical imaging input data.

The compute job implementation minimized the number of output files using tar archives to reduce the 
strain on the technical infrastructure, and removed undesired sources of result variability (time stamps, file 
order differences in archives, etc.) to allow comparisons between recomputations. Later, these archives were 
partially extracted into tailored result datasets for easy consumption (see Methods, "(Re)use"). To maximize 
practical reproducibility of computational outcomes, a compute job implementation does not reference any 
system-specifics, such as absolute paths, or programs and services not tracked and provided by the DataLad data-
set itself. This means that any system with DataLad installed, the ability to execute Singularity container images, 
and a basic UNIX shell environment is capable of recomputing captured outputs. Any performance-related 

Fig. 2  Process provenance of an individual job, its generation, and re-execution. (a) Actionable process 
provenance is generated with a datalad containers-run command. This example contains a container 
name specification (cat), a container parametrization or command, a commit message, and an input and 
output data specification. The provenance is stored as a structured, JSON-formatted record linked to a Git 
commit. (b) To re-execute a process, the datalad rerun command only needs to be parameterized with 
a revision identifier, such as a Git tag, a “commit shasum” (e035f896s45c9fa[…] in this example), or 
a revision range containing one or more commits with associated provenance records. (c) The datalad 
containers-run call is at the center of each individual job. As the core execution command (see Listing 1, 
line 33–39), it performs data retrieval, container execution, and result capture, and generates the actionable 
provenance that a subsequent datalad rerun command (b) can re-execute. With complete provenance, a 
re-execution is supported on the original hardware, or on different infrastructure. (d) The machine-readable, 
re-executable provenance record stored alongside computed results in the revision history. A legend (right) 
highlights the most important pieces of recorded provenance. While automatic re-execution requires the tool 
DataLad, sufficient information to repeat a computation using other means can also be inferred from the 
structured JSON records by other software or even humans. This information forms the basis for standardized 
provenance reporting, for example using the PROV data model54.

https://doi.org/10.1038/s41597-022-01163-2


6Scientific Data |            (2022) 9:80  | https://doi.org/10.1038/s41597-022-01163-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

adaptations to the particular systems used for our computations were strictly limited to the job scheduling layer, 
which is clearly separated from the processing pipeline. Computation and recomputation on systems with dif-
ferent batch scheduling software is then possible by providing alternative job specifications, without changes to 
the pipeline implementation.

We performed processing on the HPC and HTC infrastructure starting from the exact same dataset version 
state, but with job orchestration tuned to the respective job scheduling system (a visualization of the differ-
ent processing speeds can be found at www.youtube.com/watch?v=UsW6xN2f2jc). Provenance for each exe-
cution of the CAT pipeline on an individual image was captured in a dedicated commit, and recorded on a 
participant-specific Git branch. Recorded outputs and provenance records were pushed to the RIA store on 
job completion, yielding a total of 995.6 GB of computed derivatives in 163,212 files. The second computation 
added matching commits and branches to the DataLad dataset that enabled straightforward comparison and 
visualization of results using standard Git tools and workflows. To confirm the practicality of computational 
reproducibility solely based on the captured computational provenance information, we performed automatic 
recomputation of individual results on a consumer-grade, personal laptop without job scheduling. This type of 
spot-checking results resembles the scenario of an interested reader or reviewer of a scientific publication with 
access to (parts of) the data, but no access to adequate large-scale computing resources.

With the exception of execution time, the number of jobs, proportion of successful jobs, and size and struc-
ture of the results were identical between the two systems. Specifically, with the exception of one output flavor 
(projections of computed estimates to the cortical surface) more than 50% of all output files were identical across 
the two computations. Outcome variability for non-identical results was largely attributable to minor numerical 
differences, as illustrated by the mean squared error (MSE) over recomputations for a range of key VBM esti-
mates: total surface area ( 1891µ = , = .MSE 0 315), cerebro-spinal fluid (µ = 365, MSE 0 052= . ), total intrac-
ranial volume (µ = 1508, = .MSE 0 052), white matter (µ = 519, MSE 0 004= . ), and gray matter (µ = 621, 

= .MSE 0 001). We also computed correlations over different brain parcellations included in the CAT toolbox. 
The lowest observed correlation across recomputations for VBM estimate distribution across different brain 
parcellations were Pearson’s ρ > .0 998 for the Destrieux 2009 surface parcellation28 for all brain regions. Quality 
control metrics depicted in Fig. 4 exhibit 0 99999ρ > .  for computation and recomputation.

The complete implementation of this showcase cannot be shared due to imposed data usage and software 
license restrictions. However, we provide a bootstrapping script that implements all required setup steps at 
https://github.com/psychoinformatics-de/fairly-big-processing-workflowgithub.com, and share a detailed 
description and full recipe of the container together with instructions on how to build and use it at https://
github.com/m-wierzba/cat-containergithub.com/m-wierzba/cat-container.

Use case: Open tutorial.  As strict software license restrictions and data usage agreements prevent fully 
open sharing of computed results and a public demonstration of their process provenance records, we set up 
an open tutorial analysis using free and open source fmriprep software29 and open data from the studyforrest.

Fig. 3  Overview of DataLad dataset linkage through processing and reuse. Any DataLad dataset may comprise 
other DataLad datasets as subdatasets via lightweight but actionable and versioned links. This connects a dataset 
to the content and provenance of a different modular unit of data, such as the outcomes of a the preceding 
processing step. The genesis of an analysis output (Analysis A/B) based on intermediate processing outcomes 
(Tailored results A/B) can thus be traced back all the way to the original raw data. Access control and storage 
choices are independent across individual components in this network of linked data modules. Aggregated data 
and analysis results can be shared with larger audiences or publicly on a variety of platforms, while raw and 
derived data may underlie particular access restrictions, or require particular hosting solutions due to their size.
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org project30. We confirmed that process provenance was sufficient to enable automatic recomputations on an 
HTC system, a personal work station running Debian, and a Mac, and published the resulting DataLad data-
set to public GitHub (https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial) and 
Gin (https://gin.g-node.org/adswa/processing-workflow-tutorial) repositories. This demonstration allows for 
in-depth inspection, retrieval (datalad get) of any and all data processing inputs and outputs, as well as automatic 
recomputation (datalad rerun) of all captured results.

Discussion
The proposed framework aims to make the results of any processing as open and reusable as the given limits of 
individual components allow. It streamlines computation, re-computation, and sharing with appropriate audi-
ences for datasets and on compute infrastructure of any size. To this end, proven procedures from software 
development and a set of open source software tools are assembled into a scalable and portable framework with a 
variety of features: The basis for transparency is laid with version control for all involved files, including software 
environments. Distributed data transport and storage logistics offer flexibility to adapt to particular comput-
ing infrastructure. Reproducible results are enabled via comprehensive capture of machine-actionable process 
provenance records, capitalizing on portable containerized environments. Combining distributed computing 
with ephemeral workspaces that resemble workflows from collaborative software development yields efficient 
processing, and ensures the validity of provenance information.

The framework shares features and goals with a number of related systems, some of which we want to high-
light in order to illustrate how the proposed workflow and its main building blocks relate to other solutions. The 
proposed Pan-Neuro31 is an alternative solution for neuroscientific computing on large-scale data, but is more 
geared towards interactive processing, and represents a centralized, cloud-based platform for computing and 
data hosting. IPFS, the InterPlanetary File System (https://ipfs.io), is a distributed system for data transport that 
employs an approach to content addressing that is based on cryptographic hashes of file content. This concept 
is identical to the one employed by git-annex, except for differences in the hash or key composition details. 
Consequently, these systems are interoperable, and the proposed framework could directly employ IPFS-based 
data sources via the git-annex integration (https://git-annex.branchable.com/special_remotes/ipfs/). DVC32 is a 
version control system and workflow manager also built on Git. It employs distributed version control for indi-
vidual large files or collections of files, and captures provenance of language-agnostic machine-learning pipelines 
that connect multiple steps of building an ML model into a directed acyclic graph (DAG). Major differences lie 
in DVC’s specific focus on machine learning models in workflow management, and less emphasis on portability 
and reproducible environments. Snakemake21 is a feature-rich and domain-agnostic workflow engine, with sup-
port for including software environments in the form of conda-environments or software containers, portable 
workflows that allow execution on remote resources such as cloud services or batch systems on compute clusters, 
and provenance capture. DataLad can enhance snakemake workflows by retrieving versioned input data files 
(http://docs.datalad.org/projects/mihextras/generated/man/datalad-x-snakemake.html), and snakemake-based 
compute job orchestration could be employed as an alternative to the custom implementations for SLURM and 
HTCondor used in the work presented here. Parsl33 is a Python-based parallel scripting library that is designed 
to enable compositional programming for a variety of scientific use cases. It features workflow management, 
a mix-and-match style portability with provider interfaces to configure resource-specific requirements across 
tools or infrastructures, and data management that can perform data transfers to and from resources via several 
protocols. Similar to snakemake, it provides an alternative workflow definition and orchestration solution, and 
could employ the provenance capture approach proposed here. Unlike the framework proposed here, Parsl does 
not build on a version-controlled core data structure, but on a specification of interconnected apps and the data 
flow between them. However, like snakemake files, these specifications could be tracked within DataLad datasets 
in order to combine the capabilities of these systems. Apache Spark34 and Dask35 are both feature-rich, distrib-
uted computing solutions targeting different software ecosystems. Unlike the proposed framework or the afore-
mentioned solutions they require the deployment of dedicated services across a distributed computing resource, 
and can perform large-scale computations via internal parallelization, where a comparable compute-node local 
provenance capture step is not performed or possibly even meaningful.

Overall, our framework is a general-purpose solution that is compatible with any data that can be repre-
sented as files of any size, and any computation that can be performed via a command line call. It is built on a 
collection of portable, free and open-source tools that can be deployed without special privileges or administra-
tive coordination on standard HTC/HPC infrastructure, or personal computing equipment.

While it is an explicit aim for the framework to yield FAIR outputs, this aspirational goal is not fully reached. 
Metadata used and produced by the framework does not conform to explicit annotation standards. Instead, 
it encodes essential metadata, such as author, date, time, and description in locations that are provided by the 
version control system Git. Other metadata are put into plain-text, key-value data structures that conform to no 
particular formal ontology or vocabulary. This shortcoming limits the findability and accessibility of its outputs 
severely. Questions like “which outcomes were computed with a specific version of a particular software?” can-
not be reasonably answered without additional standardization and annotation effort.

That being said, the main contribution of the proposed computational approach is the association of process 
provenance with captured outcomes (FAIR R1.2), with precise linkage of any data inputs within and across 
individual datasets (FAIR I3), using unique, content-hash based identifiers for all components (FAIR F1). These 
metadata are tracked in a dedicated overlay data structure that can ensure their accessibility, even when the 
underlying data are no longer available or a particular entity has no permission to access them (FAIR A2).

What the framework provides today is a technical system that, despite its ignorance regarding formal 
metadata standards affords practical, automatic recomputation of arbitrary data processing results. This 
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ability dramatically elevates the starting point for future FAIRification efforts of computational outcomes. 
Reproducibility can be programmatically verified, thereby providing a confirmation of the comprehensiveness 
of data and essential process metadata encoded in a DataLad dataset. Subsequent annotations of precisely ver-
sioned data, or tracked computational environments can retroactivily boost findability and accessibility of out-
comes. For example, an added annotation of the composition of an employed containerized pipeline can help 
answer the question posed above. Neither metadata format nor terminology are constrained by the proposed 
framework. Importantly, the ability to recompute outcomes provides a strong incentive for researchers to pro-
duce computational outcomes with verifiably complete (meta)data. This is an important half-step towards a 
FAIRer future that boosts the availability of research outputs that can receive continuous updates to co-evolve 
with further developments of metadata standards and requirements of future metadata-driven applications. To 
this end, a DataLad dataset can also be exported to different formats used in frameworks with a similar aim, 
such as BagIt36.

The use of containerized software environments plays a key role in the proposed framework. They represent 
the most practical solution to portable computational environments today. However, their long-term, universal 
accessibility is not guaranteed. Even today the singularity software does not support all major operating 
systems. Ten years ago, the popular docker software did not yet exist, and it is unclear whether its container 
images will be executable in ten years from now. Providing the build instructions for a container image, rather 
than (or in addition to) the readily executable image, may improve the longevity of their accessibility, and 
also mitigate the problem of license-imposed sharing restriction. However, it is not guaranteed that executing 
a recipe twice results in identical software containers. Reproducible builds, the practice of creating identical 
container images from a recipe37, for example, require the specification and availability of software and sys-
tem libraries at precise versions. For the same reason of long-term accessibility, it will also be necessary to 
incorporate DataLad’s own idiosyncratic provenance metadata into such a comprehensive provenance report 
— then matching a format and standardization desirable for a particular scope or application. A promising 
effort towards portability and longevity of container technology is the Open Container Initiative (OCI; https://
opencontainers.org), which aims to create open, vendor-neutral, and portable industry standards around con-
tainers formats and runtimes.

Based on process provenance and version control, structured analyses of variability between (re)compu-
tations on the same or different infrastructure are facilitated13,38. Bit-identical recomputation of a result are 
trivially verifiable. The comprehensive capture of input data version, computational environments and process 
parameterization enable deep inspection of other sources of result variability. Building on this foundation, more 
standardized process descriptions39 and reproducible computational environments37 can further enhance these 
types of analyses. Nevertheless, computational results that do not reproduce exactly are a challenge for content 
checksum based version control systems like Git. If irreproducibility is solely caused by issues of numerical pre-
cision and reproducibility of basic floating point operations, it may be possible to nevertheless achieve bitwise 
identical result by reducing the precision of stored outcomes to empirically meaningful levels of detail, like we 
did here for the aggregated brain structure scores in the UKB use case. However, in general data type specific and 
research focus specific implementations of “identity” operators would be required, and while Git offers means 
for their integration (so-called diff drivers), there are no generally applicable off-the-shelf solutions available for 
this problem.

The approach to reproducible computation proposed here is applicable to a wide range of use cases. Different 
datasets, different processing pipelines, and different containerization technologies, such as Docker, can be 
employed by simply replacing the respective components, and utilizing features already built into DataLad. 
These possibilities are illustrated in the extensive DataLad Handbook40 at http://www.handbook.datalad.org. 
Combining this framework with more capable workflow engines for defining and orchestrating compute jobs 
and their interdependencies in the future, would open up the possibility for implementing other types of data 
processing that go beyond the parallel execution of mutually independent compute jobs that make up the use 
case illustrated in this work. Such an implementation would need to fulfill three general requirements that 
were implemented here: 1) The execution of a compute job must take place in a workspace that is defined by a 
recorded state in a DataLad dataset. 2) Execution via Datalad captures process provenance in a new, incremental 
dataset state. 3) Advanced dataset states after any parallel processing stage are consolidated into a merged main-
line. When these conditions are met, the structure of a processing DAG would be reflected in the version-control 
history of a DataLad dataset hierarchy that comprises all inputs and outputs of a computational project, with 
each recorded step being associated with machine-actionable provenance records that enable deep inspection of 
large-scale computing outcomes.

The presented showcases provide two concrete examples for the adoption of the proposed framework that 
deal with typical obstacles for transparent, reproducible science. The UKB’s data size exceeds the capacity of 
most infrastructure. We demonstrated the scalability of our framework by processing these data on systems with 
hardware limitations that would typically render even storage of inputs and outputs difficult or impossible. As 
the proposed framework enables selective recomputation even on commodity hardware, consumers can inves-
tigate results without having to rely on the original authors, and without access to the original computational 
infrastructure. Even though the raw data may be too large to allow users a complete recomputation, the process 
provenance entails a trail of processing steps that permits automatic recomputation of individual results. A 
one-time computation on larger infrastructure can thus build a verifiable, trustworthy foundation for numerous 
subsequent analyses by other researchers.

Finally, above and beyond everything else, the framework makes research as open as desired. The medical 
imaging showcase featured a processing pipeline based on proprietary software and pseudonomized personal 
data under usage constraints. Data and computational environment are not publicly shareable. But if data usage 
agreements and software licensing permit, as it is the case in the second showcase, processing results can be 
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shared publicly that are independently and automatically reproducible by any interested party. This level of 
transparency dramatically improves the accessibility of scientific outcomes.

Methods
The proposed framework aids the reproducible execution of a containerized pipeline on input data, by associ-
ating computational outcomes with machine-actionable provenance records in a version control system. We 
illustrate the technical details of this process with two use cases that differ in scale as well as data access and 
processing requirements, but follow a common pattern in general setup and composition.

Framework setup.  The technical nature of the framework components, in particular its foundation, the 
version control software Git, enables distributed computational workflows that utilize and extend established 
procedures from collaborative software development to data processing. The framework is bootstrapped in two 
steps that could be performed by a tailored shell script for a particular application.

Self-contained processing specification as a DataLad dataset.  The first step is the creation of a new 
DataLad dataset that will eventually track the processing results (dataset labeled “Results” in Fig. 3). Input data, 
images of containerized pipelines, or custom code are added to this dataset. While the use of software containers 
to provide processing pipelines is not strictly required, they are a practical method to provide stable and porta-
ble computational environments. Because such containers can be stored in image files, they can be tracked and 
precisely versioned like any other component of a DataLad dataset. The datalad-container extension provides a 
convenience interface for registering containers and for executing commands in such environments.

All processing components, such as processing-specific, customized scripts and applications or data, can be 
added directly to the dataset as individual files. More typically, however, individual processing components, for 
example input data or containerized pipelines, are placed in separate DataLad datasets and linked as subdatasets 
(Fig. 3). This more modular structure enables (re)use of independently maintained components, while strictly sep-
arating access modalities to each of them. In this way, access-restricted input data does not impair sharing of less 
sensitive outcomes and the versioned link between superdataset and subdatasets guarantees precise identification 
of processing components, regardless of whether a particular dataset consumer has access to a given component.

The resulting dataset is the entry point to a self-contained directory structure, potentially comprising other 
nested DataLad datasets, that jointly define identity and location of all data processing inputs in the exact form 
needed for a particular computation.

Environment and performance optimized orchestration.  The second step is the preparation of the 
computational environment and processing orchestration. This relates to what is computed as well as how it is 
computed. The compute job orchestration, the how-to-compute, could be as simple as direct, sequential executions 
of required processing steps in a shell script for-loop. However, large-scale computations typically require some 
form of parallelization. The compute job orchestration is thus likely to be implemented using the job scheduling 
system of a given compute infrastructure. As such, how-to-compute is highly infrastructure-specific, and must 
determine an optimum balance of resource demands, such as run time, memory and storage requirements, in 
order to achieve optimal throughput.

The what-to-compute, the computational instructions, pipelines, or scripts, need to be independent compu-
tational units that can be executed in parallel. A common example is the parallelized execution of a processing 
pipeline on different, independent parts of input data. As parallelization often corresponds to the granularity at 
which a recomputation will be possible in our framework, relevant considerations are, for example: “What is the 
smallest unit for which a recomputation is desirable?”, or “For which unit size is a recomputation still feasible on 
commodity hardware?”. To ensure reproducibility for an audience that does not have access to the original infra-
structure, what-to-compute needs to be infrastructure-agnostic, without references to system-specifics such as 
absolute paths, or programs and services not tracked and provided by the DataLad dataset itself. Then, compu-
tation and recomputation of what-to-compute are possible on different systems, with any potential adjustments 
only relating to the job orchestration layer in how-to-compute.

Execution and result consolidation workflow.  After the two preparatory steps are completed the actual 
data processing can be executed by submitting the compute jobs to the job scheduling system. Each compute job 
will clone the DataLad dataset with the processing specification to a temporary location, bootstrap an ephemeral 
workspace that is populated with all inputs required for the given job with a job-specific parameterization, exe-
cute the desired computing pipeline, and capture a precise provenance record of this execution, comprising all 
inputs, parameters and generated outcomes. Lastly, it pushes this provenance metadata and result file content to 
permanent storage. This workflow resembles a standard distributed development workflow in software projects 
(obtain a development snapshot, implement a new feature, and integrate the contribution with the mainline 
development and other simultaneously executed developments) but applies it to processing of data of any size. 
Specific details of this workflow are outlined in sequential order in the following paragraphs. Where applicable, 
they annotate and rationalize the generic compute job implementation in Listing 1.

Dataset clone source and update push target can be separated in an initial setup step to improve perfor-
mance. When all compute jobs deposit their outcomes at the same DataLad dataset location that later compute 
jobs also clone from, version history in this dataset accumulates and progressively slows the bootstrapping of 
work environments of compute jobs, because more information needs to be transferred. Moreover, result depo-
sition in a DataLad dataset is a write operation that must be protected against concurrent read and write access 
for technical reasons, and hence introduces a throughput bottleneck. Both problems are addressed by placing 
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an additional clone of the pre-computation state of the processing specification dataset in a RIA store before job 
submission (Fig. 1d). This clone is used for result deposition only (Listing 1, lines 17 and 49). Dataset clones 
performed by jobs are done from the original location that is never updated, hence also never grows. In order to 
avoid unintentional modifications during long computations, the dataset clone source for jobs may not be the 
dataset location used for preparation (Fig. 1a), but yet another, separate clone in a different RIA store. The clone 
source and push target locations are provided as parameters to compute jobs (Listing 1, lines 5-6). All dataset 
locations are not confined to exist on the same hardware as long as they are accessible via supported data trans-
port mechanisms over the network.

Job-specific ephemeral workspaces are the centerpiece of the computation, and the location where the 
actual data processing takes place (Fig. 1c). Critically, these workspaces are bootstrapped using information 
from the specification DataLad dataset only. This is achieved by cloning this dataset into the workspace first 
(Listing 1, line 11), and subsequently performing all operations in the context of the clone. After computation 
and result deposition the clone and the entire workspace are purged. This ensures that all information required 
to perform a computation is encoded in this portable specification, that it is actionable enough to create a suit-
able computing environment, and that all desired outcomes are properly registered with the DataLad dataset to 
achieve deposition on permanent storage.

Containerized execution and provenance capture happens within the ephemeral workspace on a uniquely 
identified branch per job (Fig. 1b, “workflow execution”; Listing 1, line 21). Prior computation, the state of this 
branch is identical for all jobs. It comprehensively and precisely identifies all processing inputs, and links them 
to author identities, time stamps, and human readable descriptions encoded in the Git revision history of the 
dataset (Fig. 2d, top).

Based on this initial state, a computational pipeline is then executed, and all relevant computational out-
comes are saved to the DataLad dataset to form an updated state (Listing 1, line 33–39). For this execution, all 
required input files are specified by their relative path in the DataLad dataset (potentially pointing into linked 
subdatasets). Importantly, only these job-specific inputs will be transferred to the compute job’s environment. 
Likewise to be saved outcomes are selected by providing path specifications. Given the execution of the compu-
tation in an isolated, ephemeral workspace that is unique for each individual job, two guarantees can be derived 
regarding the provenance of the computational outcomes: 1) All dataset modifications can be causally attributed 
to the initiated computation; 2) only declared inputs were required to produce the outcomes.

DataLad commands like run (for command line execution) or containers-run (for execution in containerized 
environments) yield machine-readable provenance records that express what command was executed, with which 
exact parameters, based on which inputs, to generate a set of output files (Fig. 2d). Such a record is embedded in 
the Git commit message of the newly saved dataset state as structured data. The record itself is lean and free of 
explicit version information for individual inputs, because the dataset state as a whole jointly identifies all versions 
of all dataset components, such that individual versions are readily retrievable on a (later) inspection of this state.

The captured provenance record is machine-actionable. Using the dataset and information in the provenance 
record in a dataset state’s commit message, the DataLad command rerun can reobtain necessary inputs and run 
the exact same command again, given availability of data and environments. Importantly, this re-execution does 
not strictly depend on the original compute infrastructure, but benefits from DataLad’s ability to retrieve file 
content from multiple redundant locations.

Result deposition takes place after successful completion of each job. The file content of computational 
outcomes, along with their provenance, are pushed to permanent storage (Fig. 1b, blue arrow). Two different 
components of result deposition have to be distinguished.

Transfer of file content (Listing 1, line 44) is an operation that is independent across compute jobs, and can be 
performed concurrently. This enables simultaneous transfer of (large) files. Importantly, only file content blobs 
(i.e., git-annex keys) are transferred at this point.

Additionally, critical metadata must be deposited too. All essential metadata is encoded in the new dataset 
state commit, recorded on the job-specific Git branch. Consequently, it is deposited using a git push call (Listing 
1, line 49). This push operation is not concurrency-safe, hence must be protected by a global lock that ensures 
only one push is performed at a time across all compute jobs (using the tool flock). Therefore this step represents 
a central bottleneck that can influence computational throughput. However, when file-content is only tracked by 
checksum with git-annex, the changes encoded in the Git branch are metadata only, and a transfer is typically fast.

After successful completion of all computations, the DataLad dataset on permanent storage holds the prov-
enance records of all results in separate job-specific branches, and the content of all output files in a single 
git-annex object tree.

Result consolidation is the final workflow step. After processing, the result DataLad dataset contains as many 
branches as successfully completed jobs. These branches must be consolidated into a new state of the mainline 
branch that jointly represents the outcomes of a individual computations (Fig. 1b, “result consolidation/merge”).

How exactly this merging operation must be conducted depends on the nature of the changes. In the simplest 
case, all compute jobs produced non-intersecting outputs, i.e., no single file was written to by more than one 
compute job. In this case, all branches can be merged at once using a so-called octopus-merge:

# octopus - merge all "job" branches at once
git merge -m "Merge results" $(git branch -al | grep’job-’)

Depending on the number of result branches, it may be necessary to merge branches in batches to circum-
vent operating system or shell limits regarding a maximum command line length. If computational outcomes 
are not independent across jobs (i.e., order of computation/modification matters), a merge strategy has to be 
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employed that appropriately acknowledges such dependencies. If the deposition dataset is hosted in a RIA store 
(as suggested above for performance reasons) this operation is performed in a temporary clone.

As a final step, valid metadata on output file content availability must be generated. File content resides in the 
result dataset at the deposition site already, but the required metadata was not pushed to its internal git-annex 
branch from all compute jobs, in order to avoid a consolidation bottleneck. Instead, these metadata are gener-
ated only now, by probing the availability of the required file content blobs for all files present in the mainline 
branch after merging all compute job branches.

# discover/confirm result file availability
git annex fsck --fast -f output –storage

Listing 1 Complete compute job implementation as a bash script. A batch system invokes the job-script in a tem-
porary working directory with three parameters: a URL of a DataLad dataset tracking all code and input data, a 
URL to deposit job-results at, and an identifier to select a sample for processing. Apart from performance-related 
optimizations, the job implementation conducts three main steps: 1) clone a DataLad dataset with all infor-
mation to bootstrap an ephemeral computing environment for each job; 2) containers-run a contain-
erized pipeline with a comprehensive specification of to-be-retrieved inputs and to-be-captured outputs; 3) 
push captured outputs and process provenance records to a permanent storage location. Preparation, compu-
tation, provenance record creation, and file content deposition on permanent storage are fully independent 
across jobs, and are executed in parallel. Only the git push of the provenance record to a central reposi-
tory must be protected against concurrent write-access for technical reasons. Additional job parametrization 
(DSLOCKFILE and JOBID environment variables) are defined at job-submission using batch system specific 
means. The job script can be adjusted to a different processing pipeline by replacing the container invocation 
(see APPLICATION-SPECIFIC CODE markers).

# push consolidated provenance records and file availability # metadata 
to permanent storage

datalad push --data nothing

The git-annex fsck command probes the configured output-storage site whether it possesses a given 
annex key (i.e., a file content blob corresponding to a particular checksum), and generates an appropriate avail-
ability metadata record. The final datalad push command (Listing 1, line 44) transferred these verified metadata 
records to permanent storage.

The outcome of this consolidation process is a self-contained DataLad dataset, with valid, machine-actionable 
provenance information for every single result file of the performed data processing. As such, it is a modular unit 
of data, suitable as input for further processing and analysis. It translates the advantages of comprehensive and 
precise linkage of all its components across any number of other data modules to any consumer.

Balance of reproducibility and performance.  Taken together the described approach to reproducible, 
large-scale computation implements a three layer strategy. From bottom to top, these layers feature different 
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trade-offs regarding portability/reproducibility vs. flexibility for performance adaptations to particular com-
putational environments: The lowest layer is the (containers-)run command, comprising an environment 
specification and instructions to compute the desired outcomes from inputs in this environment. Using suitable 
technologies, such as computational containers, this layer offers a maximum of portability, but also a minimum of 
flexibility, as this exact environment must be provided in order to reproduce results. Consequently, the proposed 
framework captures process provenance at this layer (Fig. 2). The middle layer describes how a self-contained, 
ephemeral workspace can be generated that is suitable for executing the specification of the previous layer (Listing 
1). Here, general infrastructural choices can be made. For example, a limitation to a POSIX-compatible environ-
ment that is common for HPC/HTC systems, or the granularity with which provenance records are captured (and 
therefore the granularity at which reproducibility is supported). This layer plays a key role in ensuring that process 
provenance records are valid and complete. The topmost layer is concerned with maximizing performance on a 
particular infrastructure via tailored job orchestration, and composition. This layer is poorly portable as it ref-
erences infrastructure-specific elements, such as job scheduling systems, absolute paths, user names or resource 
identifiers. While the implementation of all three layers should be provided within the DataLad dataset for a 
computational project, only the lowest layer is strictly required for reproducing results.

Software requirements.  The software and their minimum version requirements for executing the frame-
work are datalad v0.14.2, Git v2.24, git-annex v8.202003, and datalad-container v1.1.2 (not 
required for recomputation). Optional requirements are job scheduling systems as well as containerization soft-
ware (e.g., Singularity v2.6.).

In principle, the framework could also be used without a software container. But despite their problems, con-
tainers represent the contemporary optimum for encapsulating computational environments that can be shared 
and reused across different systems. Here we have used Singularity15, one of the most widely used container 
solutions for both single- and multi-user environments, suitable for HPC/HTC architectures. This choice limits 
the target platform on which a provenance-based recomputation can be attempted, and for example rules out 
the Windows operating system for which this software is not available. Other technologies, such as Docker, offer 
a different set of supported environments.

UK Biobank computing use case.  To demonstrate the framework’s scalability and its ability to create reus-
able derivatives for subsequent analyses, we applied it to data from the brain imaging component of the UKB pro-
ject16. We performed a containerized analysis for voxel-based morphometry (VBM)23 based on the Computational 
Anatomy Toolbox24, a common method for anatomical brain imaging data. This choice of data and processing 
pipeline posed particular challenges for openness, transparency, and reproducibility. The UKB imaging project 
is one of the largest studies of this kind. The data are under strict usage constraints to ensure the responsible use 
of participants’ personal data. Moreover, the chosen processing pipeline is based on MATLAB, at present still the 

Fig. 4  Distribution of quality assurance measures, derived for 41,180 unprocessed T1-weighted images from 
the UKB dataset. The quality measures were obtained retrospectively based on the preprocessing methods45,55. 
For both measures, lower values correspond to better quality. Abbreviations: IQR - image quality rating,  
a weighted composite score based on noise, inhomogeneity, and image resolution (0.5–1.5 = “perfect”,  
1.5–2.5 = “good”, 2.5–3.5 = “average”, 3.5–4.5 = “poor”, 4.5–5.5 = “critical”, >5.5 = “unacceptable”);  
ICR - inhomogeneity contrast ratio, estimated as the standard deviation within the white matter segment of 
the intensity scaled image.
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most prevalent programming environment in biomedical research11, enforcing rigid redistribution limits due to 
its proprietary, closed-source license. The setup steps were implemented in a bootstrap script available at https://
github.com/psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_ukb_cat.sh.

Self-contained processing specification as a DataLad dataset.  The UKB provides imaging data in 
ZIP archives, with one archive containing all files for a single modality of a single participant in one format. Direct 
downloads via versioned perma-URLs are not possible, but ukbfetch, a custom binary-only downloader appli-
cation, must be used.

We implemented datalad-ukbiobank41, a DataLad extension (see Box 1) that aids retrieval, 
indexing, and versioning of UKB data offerings in the form of DataLad datasets. Such a dataset represents data 
in three variants (using dedicated Git branches): the downloaded ZIP files, extracted ZIP file context using 
UKB-native filenames, and an alternative data organization following the BIDS standard.

Using datalad-ukbiobank, we retrieved MRI bulk data for all participants in NIFTI format. Each 
participant’s data were represented as an individual DataLad dataset, yielding 42,715 datasets in total. The 
BIDS-structured branches of all these datasets were jointly tracked by a single UKB superdataset (“Data” in 
Fig. 3). This UKB superdataset is installable within seconds. On a filesystem, it takes up about 40 MB of space, 
but can retrieve any of the registered file content in the entire DataLad dataset hierarchy, comprising 76 TB 
across 43 million files, on demand.

As processing pipeline, we chose CAT’s default segmentation of structural T1-weighted images using geo-
desic shooting42, including calculation of total gray matter (GM), white matter (WM), and intracranial volume 
(TIV), as well as extraction of regional GM estimates from several brain parcellations. To this end, we built a 
Singularity container for the MATLAB-based Computational Anatomy Toolbox (CAT; version: CAT12.7-RC2, 
r1720)24, which is an extension to the Statistical Parametric Mapping software (SPM; version: SPM12, r7771; 
www.fil.ion.ucl.ac.uk/spm/software). As MATLAB requires a commercial, non-transferable license, we used 
a compiled version of the CAT toolbox provided by the authors, which does not require the availability of a 
MATLAB license at runtime. Due to software license restrictions (the MATLAB Compiler Runtime in the con-
tainer is subject to the MATLAB Runtime license), we cannot redistribute the container image, but we share 
a detailed description and full recipe of the container together with instructions on how to build and use it at 
https://github.com/m-wierzba/cat-container.

We added two custom code files to the dataset. First, a batch script, with a comprehensive specification and 
parameterization of all processing steps to be performed by CAT in an input image. This script allowed us to 
bundle up all relevant analysis steps into single command that also defines the smallest unit for recomputation. 
Second, a utility script to post-process all relevant outputs (≈30 individual files) into four tar archives per 
computation in order to minimize disk space usage and number of resulting files. Controlling the total number 
of output files was important due to the amount of computational outcomes to be tracked in this particular 
result dataset. Only four files per computation translate to more than 160,000 files in total. Such large datasets 
require substantial file system operations, even when only a subset of file content is retrieved for a particular 
use case.

The resulting tar archives are organized according to envisioned consumption scenarios (vbm containing 
modulated gray matter density and partial volume estimates in template space, native with atlas projections 
and partial volumes in individual space, surface with surface projection and thickness, and inforoi con-
taining regional volume and thickness estimates of several atlases/parcellations; Fig. 1a). tar was parameterized 
to create archived with a normalized file order, creation time, and file permissions in order to not introduce arti-
ficial variation between recomputations. Likewise, all result files were carefully stripped of timestamps and other 
non-deterministic log file content. The resulting reproducible tarballs allow to attribute file content variability 
across re-computations to actual result variability.

Environment and performance optimized orchestration.  Data were processed on an HPC cluster 
and a high-throughput computing (HTC) cluster, each imposing a different set of resource constraints. The HPC 
system is a modular supercomputer with 1,872 nodes, currently among the 500 fastest compute infrastructures 
in the world43. While available disk space was abundant, storage was constrained by an inode quota of 4.4 million 
files – less than the total number of files of the raw dataset. In contrast, the HTC cluster is a mid-sized computa-
tional cluster with 31 nodes with only about 400 TB storage capacity, preventing the existence of more than one 
copy of the raw dataset, and limiting the size of derivatives that could be stored.

To reduce the disk space and inode demands, all DataLad datasets were stored in a RIA store. In this "backend" 
representation (Fig. 1d), a single participant dataset encompasses 25 inodes and about 4 GB of disk space. When 
cloned into a workspace (Fig. 1a), it expands to several hundreds of files. In total, the employed RIA store hosts 
42,715 datasets comprising the full UKB data, and consumes 75.6 TB of disk space with less than 940k inodes.

The ability to extract subsets of otherwise compressed inputs only when needed in ephemeral workspaces 
allowed us to adjust the parallel job load to the available resources. This enabled computations when disk space 
or inode availability were insufficient for the full dataset. With this setup, we were able to complete data process-
ing for a one-hour-per-image pipeline on the HPC system within 10.5 hours, using 25 dedicated compute nodes, 
each executing 125 jobs in parallel on RAM disks with GNU Parallel44. On the HTC system in turn, HTCondor 
scheduled jobs dynamically across several weeks for available compute slots in an otherwise busy system used 
for unrelated computations by other researchers.

In order to validate different aspects of reproducibility all data processing was performed twice, once on 
each computing platform, and also a third time for a small subset of the data on a personal laptop. For the two 
main computing platforms dedicated job submission scripts were implemented for SLURM and HTCondor 
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respectively. In contrast, the partial recomputation on a laptop solely relied on the local availability of the 
Singularity container technology, but was otherwise fully automatic, based on the captured provenance record, 
to confirm practical reproducibility for an independent consumer.

Because of the large number of participants in the dataset and the aim to be able to rerun the data processing 
on a future, even larger release, one compute job per participant was generated. A compute job serially processed 
either two images, only a single image, or none, depending on the actual data availability. A dedicated prove-
nance record was captured for each pipeline execution on an individual input image, yielding a total of 41,180 
records.

Execution and result consolidation workflow.  Data processing was executed based on two variants of 
the same DataLad dataset, each containing a common computational environment, and the same input data, but 
a different, optimized job submission implementation. Result consolidation was first performed separately on 
each computational infrastructure, following the steps described in the framework setup. Lastly, the two complete 
sets of computational outcomes were integrated in the same dataset, as two different branches, for comparison.

Result verification.  As prior manual data inspection was infeasible due to the amount of data, we included 
basic checks to ensure availability of T1-weighted images during processing. Subsequent quality control anal-
yses were derived from the computed results. Figure 4 shows the distribution of quality control metrics for 
T1-weighted images45 across the sample. In addition, we assessed result replicability between recomputations by 
comparing binary identity of result files between analysis repetitions. To better estimate the amount of dissimilar-
ity between recomputations, we also calculated mean squared error (MSE) over recomputations for a range of key 
VBM estimates, and the correlations between the brain atlasses included in the CAT toolbox.

(Re)use.  After successful completion, results comprise a collection of different VBM-related measures for all 
images in the sample, represented in archives. For easier consumption, and as researchers are rarely interested 
in the full set of measures, the output DataLad dataset was subsampled into smaller “special purpose” datasets. 
These datasets contained a subset of the results in extracted, and optionally aggregated form, tailored to different 
research questions, for easier and faster access. This process relied on registering the main result DataLad dataset 
into a new tailored DataLad dataset via nesting (“Tailored results A/B” in Fig. 3), extracting and transforming the 
required files with provenance-tracking by datalad run, i.e., the same mechanism that captured provenance 
for the initial computation. This approach yields a transparently generated data view that can be updated by 
re-applying this transformation in case of changed inputs via the datalad rerun command.

As a concrete example we generated a DataLad dataset with tissue volume statistics for regions of inter-
ests in each parcellation and for all participants. We implemented a script that extracted aggregated 
noise-to-contrast-ratio, inhomogeneity-to-contrast-ratio, image quality rating, total intracranial volume, total 
gray matter volume, total white matter volume, total cerebral spinal fluid volume, total white matter hyperin-
tensities volume, and total surface area into one CSV file per brain parcellation. Importantly, we limited the 
numerical representation of the scores in these tables to an empirically meaningful precision, thereby helping to 
suppress the undesirable impact of technical side-effects of non-deterministic algorithm implementations and 
floating point operations on the effective reproducibility of results for any practical purpose. These results are a 
fraction of the size and number of files of the total results, but sufficient for investigating VBM-related research 
questions. Using the encoded, machine-actionable provenance information, each result can be traced to the 
precise files they were generated from in a transparent and reproducible manner.

The direct computational output of the workflow on the UKB sample is therefore not a final result, but an 
intermediate representation optimized for storage and handling. More tailored views for concrete use cases can 
be optimized for access convenience. With this, we achieve a compromise between the desires of a data con-
sumer and the demands of the storage infrastructure and operators.

Open tutorial.  As license restrictions prevent open sharing of data and container image used in the UKB 
showcase, we implemented the processing framework for an additional use case, for which all components can 
be publicly shared in readily usable form. The resulting, fully populated DataLad dataset is publicly available 
at https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial. It can serve as a func-
tional reference implementation that affords reproducibility based on machine-actionable provenance records. 
All setup steps were implemented in a bootstrap script available at https://github.com/psychoinformatics-de/
fairly-big-processing-workflow/blob/main/bootstrap_forrest_fmriprep.sh

Self-contained processing specification as a DataLad dataset.  As input data we employed a dataset 
with structural brain imaging data for 20 individuals46 from the studyforrest.org project30, linked as a subdataset 
at inputs/data. This is a BIDS-structured dataset published under the permissive PDDL license. It is publicly avail-
able as a DataLad dataset at https://github.com/psychoinformatics-de/studyforrest-data-structural.

For data processing we use fMRIprep’s structural preprocessing pipeline29 (version v20.2.0) that is freely 
available as a Singularity container in the DataLad dataset of the public Repronim container registry https://
github.com/repronim/containers. With this pipeline, each T1-weighted MRI scan was corrected for intensity 
non-uniformity using N4BiasFieldCorrection v2.1.047 and skull-stripped using antsBrainExtrac-
tion.sh v2.1.0 (using the OASIS template). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical 
template version 2009c48 was performed through nonlinear registration with the antsRegistration tool 
of ANTs v2.1.049, using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of 
CSF, WM, and GM was performed on the brain-extracted T1w using FAST50 (FSL v5.0.9).

https://doi.org/10.1038/s41597-022-01163-2
https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://github.com/psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_forrest_fmriprep.sh
https://github.com/psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_forrest_fmriprep.sh
https://github.com/psychoinformatics-de/studyforrest-data-structural
https://github.com/repronim/containers
https://github.com/repronim/containers


1 5Scientific Data |            (2022) 9:80  | https://doi.org/10.1038/s41597-022-01163-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Environment and performance optimized orchestration.  As both foundational DataLad datasets for 
input data and pipeline are available from public sources, their file content did not need to be stored on local infra-
structure at all. Instead, the processing specification superdataset linked the two components with their GitHub 
URL, and individual compute jobs retrieved relevant input data from their associated web sources directly.

An example HTCondor-based job-scheduling setup for the HTC infrastructure used in the Open Tutorial 
showcase is included in the shared resources.

Execution and result consolidation workflow.  For demonstration purposes the same execution work-
flow as for the UKB showcase was used. However, due to the small number of compute jobs, and the long indi-
vidual runtime of each job, implementation details like the separation of clone sources and push targets, or the 
distinction of result file transfer and provenance metadata deposition only has negligible performance impact.

Data availability
Data from the UK Biobank project were obtained from a third party, UK Biobank, upon application. Interested 
parties can apply for data from UK Biobank directly, at http://www.ukbiobank.ac.uk.

Structural data from the Studyforrest project46 (https://doi.org/10.12751/g-node.zdwr8e) are available at 
https://www.github.com/psychoinformatics-de/studyforrest-data-structural. The studyforrest derivatives com-
puted by the tutorial workflow51 (https://doi.org/10.5281/zenodo.6019794) are publicly available from https://
www.github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial.

Code availability
All scripts used to process the data52 are publicly available at https://www.github.com/psychoinformatics-de/
fairly-big-processing-workflow (https://doi.org/10.5281/zenodo.6019782). The recipe used to build the CAT 
Singularity container53 (https://doi.org/10.5281/zenodo.6021002) is publicly available at https://www.github.
com/m-wierzba/cat-container.
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