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Abstract 34 

The functional diversity of the human cerebellum is largely believed to be derived more 35 

from its extensive connections rather than being limited to its mostly invariant architecture. 36 

However, whether and how the determination of cerebellar connections in its intrinsic 37 

organization interact with microscale gene expression is still unknown. Here we decode 38 

the genetic profiles of the cerebellar functional organization by investigating the genetic 39 

substrates simultaneously linking cerebellar functional heterogeneity and its drivers, i.e., 40 

the connections. We not only identified 443 network-specific genes but also discovered 41 

that their co-expression pattern correlated strongly with intra-cerebellar functional 42 

connectivity (FC). Ninety of these genes were also linked to the FC of cortico-cerebellar 43 

cognitive-limbic networks. To further discover the biological functions of these genes, we 44 

performed a “virtual gene knock-out” by observing the change in the coupling between 45 

gene co-expression and FC and divided the genes into two subsets, i.e., a positive gene 46 

contribution indicator (GCI+) involved in cerebellar neurodevelopment and a negative gene 47 

set (GCI−) related to neurotransmission. A more interesting finding is that GCI− is 48 

significantly linked with the cerebellar connectivity-behavior association and many 49 

recognized brain diseases that are closely linked with the cerebellar functional 50 

abnormalities. Our results could collectively help to rethink the genetic substrates 51 

underlying the cerebellar functional organization and offer possible micro-macro interacted 52 

mechanistic interpretations of the cerebellum-involved high order functions and 53 

dysfunctions in neuropsychiatric disorders.  54 
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Introduction 55 

Converging evidence from animal and human studies is advancing our understanding of 56 

the human cerebellum, which is engaged in motor, complex cognitive, and emotional 57 

behaviors [1-4]. While such functional diversity of the cerebellum was believed to derive 58 

more from its extensive afferent and efferent connections to extra-cerebellar structures, 59 

rather than being limited to a regular lattice-like anatomic feature of cerebellar-cortical 60 

cytoarchitecture [1, 5-8]. Considering the widely accepted understanding that the 61 

macroscale functional organization of the human nervous system is ultimately regulated 62 

by the underlying microscale gene expression [9-12], it is thus intriguing to unravel the 63 

genetic profiles underlying the cerebellar functional organization. As yet, what remains 64 

unclear is whether and how the hypothesized determination of cerebellar connections in its 65 

intrinsic functional organization interact with microscale gene expression.  66 

To date, the genetic mechanism supporting the functional organization of the human 67 

cerebellum is mainly unknown. Only a few studies have attempted to investigate the gene 68 

expression pattern of the human cerebellum, but they provided inconsistent results in gene 69 

expression variability. For instance, Hawrylycz et al. [13] and Negi and Guda [14] both 70 

found that gene expression is highly homogeneous across the anatomical regions of the 71 

healthy adult cerebellum. In contrast, Aldinger et al. [15] and Wang and Zoghbi [12] found 72 

that cerebellar development and function are governed by the precise regulation of 73 

molecular and cellular programs and that the gene expression pattern is heterogeneous 74 

across spatial and temporal scales. In addition, differences in gene expression patterns 75 

between the cerebellar gyri and sulci [16], and considerable cerebellar regional 76 

specializations containing specific cell types, as revealed by high-throughput single-77 
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nucleus RNA-seq [17] have been found in the mouse cerebellum. Because relevant studies 78 

that showed homogeneity [13, 14] explored the overall cerebellar genetic expression 79 

pattern across its gross macro-anatomical boundaries (e.g., cerebellar lobules) and might 80 

have failed to fully reflect the functional organization of the human cerebellum [18, 19]. 81 

This inconsistency in the genetic variability of the cerebellum needs to be further explored.  82 

In the past decade, functional topological maps describing the organization of the 83 

human cerebellum using task [20] and task-free functional magnetic resonance imaging 84 

(fMRI) [21, 22], specifically, separate cerebellar functional networks [21, 22] and intra-85 

cerebellar functional gradients [23], have been proposed. In particular, Buckner et al. [21] 86 

employed resting-state functional connectivity (FC) of the cerebello-cortical circuit as a 87 

tool to map the intrinsic functional architecture of the human cerebellum and proposed a 88 

possible functional parcellation into 7 networks and 17 networks. It is thus possible to 89 

decode the genetic profiles of the cerebellar functional organization by investigating the 90 

molecular genetic substrates linking cerebellar functional heterogeneity and its drivers, i.e., 91 

the connections. One promising approach is imaging-transcriptomics analysis [24-26], 92 

which allows the brain-wide spatial analysis of microscopic transcriptome data combined 93 

with macroscopic neuroimaging phenotypes [9]. Moreover, it also offers the opportunity 94 

to link the transcriptome data with the behavior variations via the neuroimaging [27]. These 95 

cross-scale analyses could provide a better understanding of the interaction between 96 

microscale gene expression and macroscale functional network, and ultimately involved in 97 

the individual behaviors, and importantly, their putative multiscale interactions in 98 

cerebellar related diseases [28]. 99 

Thus, our goal was to investigate the neurobiological genetic substrates underlying the 100 
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functional organization of the human cerebellum. More specifically, we will seek to 101 

address the following three progressive questions (Fig. S1). Are there differentially 102 

expressed genes in the diverse intra-cerebellar functional networks with largely invariant 103 

cytoarchitecture? How do gene expression and cerebellar connectivity relate to each other, 104 

and is there any link between this association and human behavior, as well as brain disease? 105 

In the current study, we first examined network-specific genes by differential gene 106 

expression analysis across diverse cerebellar functional networks characterized by largely 107 

invariant cytoarchitecture. This analysis allowed us to further investigate the genetic 108 

explanations to the cerebellar inconsistency between functional heterogeneity and 109 

cytoarchitecture near-homogeneity. Then to explore the relationship between these 110 

network-specific genes with the cerebellar connection, we constructed the gene co-111 

expression matrix using the network-specific genes and found it is highly correlated with 112 

both intra-cerebellar and cerebello-cortical cognitive-limbic FC. Furthermore, we tested 113 

the contribution of each network-specific gene to this correlation by virtual gene knock-114 

out (KO) and divided the network-specific genes into two subsets, i.e., a positive gene 115 

contribution indicator (GCI+) and a negative gene set (GCI−). We found that the GCI+ 116 

appears to be mainly involved in cerebellar neurodevelopment. Whereas GCI− seems to be 117 

related to neurotransmission, emotion-cognitional behaviors and is significantly enriched 118 

in various neuropsychiatric disorders that are closely linked with cerebellar functional 119 

abnormalities. Together, the current exploration provides a starting point for associating 120 

the genetic and behavior markers of the functional network to cerebellar involvements in 121 

higher order non-motor functions and dysfunctions in various neuropsychiatric disorders 122 

[1, 29, 30]. 123 
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Materials and Methods 124 

The schematic of the experimental design is depicted in Fig. 1 and includes three steps. 125 

Step 1 (Fig. 1A): to investigate whether network-specific genes occurred across cerebellar 126 

functional networks, we performed the differential gene expression analysis based on the 127 

combination of the Allen Human Brain Atlas (AHBA) transcriptome data [9] with a 128 

cerebellar functional parcellation atlas [21]. Step 2 (Fig. 1B): then, the co-expression 129 

matrix was constructed using the network-specific genes from step 1 and compared with 130 

FC to explore their overall correlation (referred to as the Gene-FC correlation for 131 

simplicity). Meanwhile, the relationship between gene and cerebello-cortical FC also has 132 

been explored. Step 3 (Fig. 1C): the “virtual gene knock-out” was leveraged to examine 133 

the direction of each gene's contribution to this Gene-FC correlation from step 2 and used 134 

to separate the network-specific genes into two subsets. Furthermore, we applied a series 135 

of functional annotation tools to explore the role of these genes, including gene enrichment 136 

analysis, Behavior-FC-Gene mapping analysis, disease enrichment analysis, and 137 

integrative temporal specificity analysis. 138 
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Fig. 1. Analysis pipeline. A Step 1: differential gene expression analysis. We assigned the 140 

AHBA cerebellar samples into seven cerebellar functional networks (left) [21] and 141 

averaged each gene’s expression within the same network individually. Then we compared 142 

the gene expression in each network with all the other networks by limma [31] (middle) 143 

with a fold change > 1 and p < 0.05 (FDR corrected) as an indicator (Red indicates that the 144 

genes were found significantly positively expressed in the visual network.). Thus, we 145 

obtained the network-specific genes for the seven networks (right). B Step 2: correlations 146 

between the gene co-expression and the FC included intra-cerebellar and cerebello-cortical 147 

circuit. Intra-cerebellum: for each pair of networks, we calculated the gene expression 148 

similarity between them using the cerebellar network-specific genes and then constructed 149 

the gene co-expression matrix. The FC matrix was constructed by correlating the BOLD 150 

signal for all pairs. Then the relationship between the genetic correlation and functional 151 

correlation was evaluated. Cerebello-cortical circuit: we first defined the cortical network-152 

specific genes as we did for the cerebellum and tested whether any convergently 153 

differentially expressed genes occurred. Then we used the overlapping genes to obtain the 154 

cortical genetic correlation for each cerebellar network and evaluated the relationship 155 

between the cortical genetic and functional correlation for each cerebellar network. C Step 156 

3: functional annotation includes virtual gene knock-out (KO), Behavior-FC-Gene 157 

mapping, gene enrichment analysis, and integrative temporal specificity analysis. 158 

AHBA preprocessing 159 

The AHBA [9] is a publicly available transcriptome dataset (http://www.brain-map.org), 160 

which provides normalized microarray gene expression data from six adult donors (ages 161 

24, 31, 34, 49, 55, and 57 years old; n = 4 left-hemisphere only, n = 2 both left and right 162 
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hemispheres). Table S1 shows the demographic information. Tissue collection was 163 

approved by Institutional Review Boards of the Maryland Department of Health and 164 

Hygiene, University of Maryland Baltimore and University of California Irvine, and the 165 

informed consents were obtained from decedent next-of-kin [9]. Although AHBA provides 166 

gene expression from only six adult donors, it still has many unprecedented advantages. 167 

While some existing human gene expression atlases just cover multiple brain regions, only 168 

the AHBA delivers high-resolution coverage of nearly the entire brain [32]. It includes the 169 

expression of more than 20,000 genes taken from 3,702 spatially distinct tissue samples [9] 170 

ranging from the cerebral cortex to the cerebellum. 171 

Referred to Anderson et al. [26], the current preprocessing pipeline included data 172 

filtering, probe selection, sample selection, and assignment. We first filtered the probes 173 

with the AHBA binary indicator to mitigate the background noise and excluded probes 174 

without an Entrez ID. Then for the genes that corresponded to two or more probes, we 175 

chose the probe with the maximum summed adjacency to represent the corresponding gene 176 

expression; otherwise, we retained the probe with the highest mean expression, using the 177 

CollapseRows function [33] in R. The first two steps generated 20,738 unique mRNA 178 

probes, which provided expression data for 20,738 genes. As suggested by Arnatkeviciute 179 

et al. [32] and given the known transcriptional differences [13] between the cortical and 180 

sub-cortical regions and the cerebellum, we separated the cortical and cerebellar samples a 181 

priori based on the slab type and structure name provided by AHBA and processed them 182 

separately later. In the end, 337 samples were retained for the cerebellar cortex and 1,701 183 

samples for the cortical cortex. 184 
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Finally, we respectively assigned these 337 cerebellum samples and 1,701 cortical 185 

samples into the cerebellar functional networks atlas [21] and cortical functional networks 186 

atlas [34], both of which have 7- and 17-network parcellation strategies. For each cerebellar 187 

sample, we first generated a single 1 × 1 × 1 mm3 region of interest (ROI) at the MNI 188 

coordinate for each sample using the AFNI 3dmaskdump -nbox function [35]. The network 189 

label from either 7- or 17-network parcellation was assigned if the ROI fell within a 190 

cerebellar network of the Buckner atlas. Considering the uneven and discrete sampling of 191 

the AHBA data [9], if the 1 × 1 × 1 mm3 ROI did not overlap with any network, the 192 

associated ROI was expanded to 3 × 3 × 3 mm3. And if the 3 × 3 × 3 mm3 ROI overlapped 193 

with the functional atlas, the network that had the maximum number of shared voxels with 194 

the ROI was assigned. Otherwise, the steps above were repeated for a 5 × 5 × 5 mm3 ROI. 195 

The cerebellar samples were excluded if the 5 × 5 × 5 mm3 ROI did not overlap with any 196 

cerebellar networks. Tables S2 and S3 show the distributions of the cerebellar sample 197 

assignment for the 7-network and 17-network atlases. The assignment of the AHBA 198 

cortical samples into the cortical functional network atlas was consistent with the method 199 

used for the cerebellum, and the cortical sample distributions are shown in Tables S4 and 200 

S5. 201 

Differential gene expression analysis across functional networks 202 

The gene expressions of the cerebellar samples within the same network were averaged for 203 

each gene across the samples individually, resulting in 20,738 genes × 7 or 17 networks 204 

matrices for each donor. Here we used as many of the most original overall genes as 205 

possible, because some existing methods [13, 32] for screening genes do not consider the 206 

specificity of gene expression within the human cerebellum. Then we calculated the 207 
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differentially expressed genes across the 7 networks using the R limma package [31] by 208 

comparing the gene expression in one network (e.g., control) with the remaining 6 209 

networks (e.g., default, limbic, visual, etc.). Since the gene expression vectors of the same 210 

network derived from different donors can be treated as biological replicates [26], the 211 

limma’s duplicatedCorrelation tool [36] was leveraged to evaluate the independence 212 

between replicates. Specifically, the correlations between replicates were estimated using 213 

the duplicateCorrelation function, which individually fits a mixed linear model by 214 

restricted maximum likelihood for each gene and returns a consensus correlation [36]. This 215 

consensus correlation between replicates would then be incorporated into the limma’s 216 

linear model to preserve more information than simply averaging the biological replicates 217 

[36]. The traditional minimum fold change threshold was unsuitable for determining 218 

biologically meaningful but subtly different expressions [37], in particular for the 219 

cerebellum, due to the highly homogenous cytoarchitecture. Instead, we applied the 220 

Benjamini-Hochberg (BH) method to control the false discovery rate (FDR), and the 221 

statistical threshold p ≤ 0.05 (FDR corrected) combined with a fold change > 1 was used 222 

as the key indicator for differentially expressed genes. For simplicity, the differentially 223 

expressed genes across cerebellar networks are referred to as cerebellar network-specific 224 

genes throughout this paper. The cortical network-specific genes were identified in the 225 

same way. The only difference was that the gene expression of the cortical samples was 226 

first averaged within each parcel (51 and 114 parcels, which corresponded to the 7- and 227 

17-networks, respectively) [34] and then averaged within each network. 228 

To test the specificity of these network-specific genes derived based on task-free 7 229 

functional networks, we also applied the differential gene expression analysis with the 230 
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same procedure in other different cerebellar atlases. There are the different resolution of 231 

the same task-free functional atlas [21], i.e., 17-network parcellation, independent task-232 

based multi-domain task battery (MDTB) [20] functional atlas and different resolutions, 233 

i.e., 11-, 28-lobular parcellations, of the anatomical atlas [38]. Then we estimated the 234 

overlapping genes between the network-specific genes derived based on the task-free 7 235 

functional networks with other atlases. Moreover, we applied the differential gene 236 

expression analysis in only 4 left-hemisphere donors with the same procedure to test the 237 

sensibility of these network-specific genes. 238 

Cerebellar resting-state functional connectivity (FC)  239 

The minimally preprocessed [39, 40] Human Connectome Project (HCP) S1200 release 240 

dataset [41], which has 1,018 subjects (aged from 22 to 37 years old) with both structural 241 

MRI and resting-state functional MRI (rs-fMRI, HCP S1200 manual), was used. The 242 

preprocessing pipeline includes artifact correction (correction of gradient nonlinearity 243 

distortion, realignment for head motion, registration of fMRI data using structural data, 244 

reduction of geometric distortions due to B0 field inhomogeneity, etc.) as well as denoising 245 

by ICA-FIX [42, 43]. Time courses were extracted from these CIFTI grayordinate-format 246 

preprocessed rs-fMRI images, and the global signal was regressed as well. The resting-247 

state blood oxygen level-dependent time series were averaged within each cortical parcel 248 

of the 7- or 17-network cortical atlases and within each cerebellar network of the 7- or 17-249 

network cerebellar atlases [21], separately. The FC within the cerebellum was computed 250 

using Pearson’s correlation for the averaged time courses for each interest ROI. Because 251 

four runs were performed for each subject, the correlation values were separately calculated 252 

for each run, Fisher’s z-transformed, and averaged across the runs, resulting in a 17 × 17 253 
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cerebellar networks matrix. The same process was used to calculate the correlations 254 

between each functional cerebellar network and each cortical parcel, resulting in a 114 255 

cortical parcels ×  7 cerebellar networks functional correlation matrix, which represents 256 

the FC across the cerebello-cortical circuit. Regardless of whether the FC was within the 257 

cerebellum or across the cerebello-cortical circuit, both categories of FC were defined 258 

using the more fine-grained 17-network parcellation to increase the spatial resolution. The 259 

only exception was that the cerebellar 7-network was applied while calculating the FC 260 

across the cerebello-cortical circuit to compare each cerebellar network directly.  261 

Correlation between gene co-expression with intra-cerebellar FC  262 

To fully capture the genetic correlation with the FC within the cerebellum, we leveraged 263 

the genetic samples of the two bi-hemisphere donors when constructing the gene co-264 

expression matrix since the FC of the cerebellum is bilateral. Therefore, the gene co-265 

expression was analyzed for the two bi-hemisphere donors using the network-specific 266 

genes derived from all six donors across 7 networks, using a finer 17-network parcellation 267 

to increase the spatial resolution. Ten networks that contained samples from both bi-268 

hemisphere donors were retained (Table S3). For each bi-hemispheric donor, the log2 gene 269 

expression of the cerebellar samples was mean-normalized and then averaged within each 270 

network. The cerebellar 10 ×  10 networks correlation matrix was calculated using 271 

Spearman’s correlations individually (since the non-normality of gene expression data), 272 

then Fisher’s z-transformed, and finally averaged to construct the final 10 networks gene 273 

co-expression matrix. The correlation significance level of the gene co-expression was 274 

evaluated using the overlap between the correlation significance matrix for these two 275 

individuals after being adjusted by Bonferroni correction. Meanwhile, we transformed the 276 
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17 × 17 networks FC matrix into a 10 ×  10 networks size to be consistent with the gene 277 

co-expression matrix. Finally, the relationship between the 10 ×  10 networks gene co-278 

expression and the 10 ×  10 networks FC matrix was computed using Pearson’s 279 

correlation. The correlation between the gene co-expression and FC is referred to as the 280 

Gene-FC correlation throughout the present paper for simplicity.  281 

To test the significance of the Gene-FC relationships while taking into account the 282 

spatial autocorrelation (SA), we leveraged Brain Surrogate Maps with Autocorrelated 283 

Spatial Heterogeneity (BrainSMASH) [44] to generate 10,000 surrogate maps which 284 

persevered the genetic SA of the 443 genes × 106 samples matrix. The 106 samples were 285 

equivalent to the amount of samples for the 10 networks that were used to construct the 286 

gene co-expression matrix since they contained samples from both bi-hemisphere donors. 287 

The parameter “knn” was set to 100 to keep it roughly consistent with the number of 288 

samples. These 10,000 surrogate maps were used to construct the gene co-expression 289 

matrix and thus generate an empirical null distribution of the Gene-FC correlation while 290 

taking SA into account. The p value (pSA) was defined as the proportion of correlation 291 

values produced by the surrogate maps that exceeded the correlation coefficient for the real 292 

data.  293 

In addition, to evaluate the robustness of the verified Gene-FC correlation within the 294 

cerebellum, we also recalculated it using several different parcellations, i.e., task-free 7-295 

network parcellation, and independent task-based MDTB functional parcellation [20]. The 296 

criteria for each step were consistent with our primary method. Moreover, we employed a 297 

control test to learn whether the Gene-FC correlation could be obtained using only the 298 

network-specific genes. That is, no Gene-FC correlation while using other genes. We 299 
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randomly selected 443 genes from the full gene set without the network-specific genes and 300 

referred to them as non-network-specific genes. Then we calculated the Gene-FC 301 

correlation using the non-network-specific genes and ran this step randomly 10,000 times. 302 

In addition to these thresholdless non-network-specific genes, we applied a set of 303 

thresholds to the averaged original log2 gene expression data to confirm that these non-304 

network-specific genes were expressed in the cerebellum. Doing this can also help us test 305 

whether the gene co-expression pattern constructed using these threshold non-network-306 

specific genes was correlated with FC.  307 

Lastly, we also verified the robustness of this Gene-FC correlation using the 218 308 

unrelated participants from the HCP S1200 release [41]. Besides, to constitute an 309 

independent neuroimaging validation dataset, we leveraged 296 participants with four runs 310 

(aged 38−58 years old) from preprocessed HCP-Aging Lifespan 2.0 Release [45]. This 311 

dataset, together with the 1,018 participants from the HCP S1200 release of our primary 312 

strategy, neatly covered the age ranges of AHBA (extends from 24 to 57 years old). The 313 

analysis strategy for these two additional datasets is similar to our primary approach.  314 

Correlation between gene co-expression and FC across the cerebello-cortical circuit 315 

To thoroughly investigate the cerebellar functional organization, we also explored the 316 

relationship between the cerebello-cortical FC and the genetic correlation based on the 317 

strategy used in Anderson et al. [26]. First, we defined the network-specific genes in the 318 

cortex using the same procedure as we had for the cerebellum and examined the genes that 319 

overlapped within the same network of the cerebellum and the cortex. Then the gene co-320 

expression matrix was constructed between 6 cerebellar networks and 59 cortical parcels 321 

from the two bi-hemisphere donors, using the 90 unique genes derived from the overlap 322 
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between the cortical network-specific genes and the cerebellar network-specific genes. 323 

Here, the cerebellar 7-network parcellation was selected to compare the different cerebellar 324 

networks directly. The visual network was excluded because it only had two samples from 325 

one of the 2 bi-hemisphere donors. For the cerebral cortex, 59 cortical parcels that 326 

contained samples from both bi-hemisphere donors were estimated. The log2 mean-327 

normalized expression within each cerebellar network and each cortical parcel was 328 

estimated individually and correlated using Spearman’s ρ, Fisher’s z-transformed, and 329 

averaged. We transformed the 114 cortical parcels × 7 cerebellar networks FC matrix into 330 

59 cortical parcels ×  6  cerebellar networks size to be consistent with the gene co-331 

expression matrix. Finally, the relationship between the cortical genetic correlation and the 332 

cerebello-cortical FC matrix was computed using Pearson’s correlation across six 333 

cerebellar networks and adjusted by the BH method to correct for multiple comparisons. 334 

Gene functional annotation 335 

Virtual gene knock-out (KO)  336 

To extend our investigation of the overall relationship between gene co-expression and FC 337 

within the cerebellum, we referred to a similar previous approach [46, 47] and termed it 338 

the “Virtual Gene Knock-out (KO)” to evaluate each gene’s contribution to the Gene-FC 339 

correlation. In brief, we deleted each of the 443 cerebellar network-specific genes one-by-340 

one to simulate the gene KO, then constructed the gene co-expression matrix without that 341 

gene, analyzed the correlation between the FC and the gene co-expression, and finally 342 

calculated the difference in the correlation coefficient between before and after the 343 

simulated deletion, with the result being defined as the gene contribution indicator (GCI) 344 

[46]. Based on the GCI, we identified two different gene sets that had opposite effects on 345 
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the Gene-FC correlation: a GCI positive gene set (GCI+) and a GCI negative gene set 346 

(GCI−). The virtual KO of GCI+ increased the Gene-FC correlation, and, accordingly, its 347 

expression decreased the Gene-FC correlation; in contrast, the virtual KO of GCI− 348 

decreased the correlation, and, accordingly, its expression increased the Gene-FC 349 

correlation.  350 

Behavior-FC-Gene mapping analysis 351 

To evaluate the relationship between these genes and human behaviors, we leveraged the 352 

stable brain-behavior space strategy proposed by Ji et al. [27], which could be briefly 353 

divided into the following three sections. These procedures were called Behavioral-FC-354 

Gene mapping analysis to facilitate a better understanding and fluency of the paper. 355 

(1). Principal component analysis (PCA) of HCP behavioral data: 59 behavioral 356 

measures [48] (Table S6) covering six behavior categories that represent the general 357 

domains of human behavior were used, including alertness, cognition, emotion, motor, 358 

personality, and sensory. The 218 HCP unrelated participants were selected to avoid 359 

violation of the exchangeability assumption of permutation tests, and subjects with missing 360 

data were excluded, resulting in 211 participants. The significant principal components 361 

(PCs) were calculated by a permutation test, which randomly and independently shuffled 362 

subjects' order for each behavior measure to re-run PCA 10,000 times to establish the null 363 

model. The PCs that explained variance exceeded chance (p < 0.05 across permutation test) 364 

were considered significant and retained for the next step. The nomination of PCs was 365 

based on the pattern of loadings on the original 59 behavior measures.  366 

(2). Mass univariate Behavior-FC map: the relationship between significant PCs scores 367 

and individual intra-cerebellar FC between 17 networks was quantified by a mass 368 
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univariate regression procedure called PALM tool [49] across 211 unrelated participants. 369 

For each significant PC, the derived regression coefficients on the total 136 functional 370 

connections were then Z-scored and referred to as the Behavior-FC map for this PC. The 371 

significances of the regression coefficients were assessed by a permutation test, which 372 

randomly shuffled the order of the subjects for each significant PC score 10,000 times.  373 

(3). Behavior-FC-Gene co-expression mapping analysis: to evaluate the relationship 374 

between the Behavior-FC map and the co-expression map of GCI+ and GCI−, we first 375 

constructed these maps across the ten cerebellar networks that corresponded to the 376 

networks containing genetic samples from both AHBA bi-hemisphere donors. The 377 

relationship between the Behavior-FC maps of eight significant PCs and the co-expression 378 

patterns of GCI+ and GCI− was calculated by the Pearson’s correlation respectively, and the 379 

significance was assessed by a permutation test which randomly shuffled the gene co-380 

expression pattern 10,000 times.  381 

GO, pathway, and disorder enrichment analysis (ToppGene portal) 382 

To characterize the biological role of GCI+ and GCI−, we applied the ToppGene portal [50] 383 

to conduct a gene ontology (GO), pathway, and disorder enrichment analysis. The GO [51] 384 

enrichment analysis provides ontologies to describe accumulated knowledge of genes in 385 

three biological domains: biological process, cellular component, and molecular function. 386 

The BH method for FDR (FDR-BH correction) (p < 0.05) was chosen to correct for 387 

multiple comparisons. 388 

Integrative temporal specificity analysis 389 

To investigate the overall temporal expression features of these genes, we applied an online 390 

cell type-specific expression analysis (CSEA) tool [52] to do the enrichment analysis of 391 
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the genes within the cerebellum during different lifespan windows. Here, a specificity 392 

index probability (pSI = 0.05, 0.01, 0.001, and 0.0001, permutation corrected) was used to 393 

define the probability of a gene being expressed in each time window relative to all other 394 

time windows to represent the varying stringencies for enrichment. The significance of the 395 

overlap between the interest gene set and those enriched in a specific time window was 396 

evaluated by Fisher’s exact test, and the BH method for FDR (FDR-BH correction) was 397 

chosen to correct for multiple comparisons. 398 

Data and availability 399 

R 3.6.1 and custom scripts were used to perform statistical analysis. All R packages were 400 

mentioned explicitly in the text where the package was used. The code is freely available 401 

at https://github.com/FANLabCASIA/CerebellarGeneFCCorrelation. The ToppGene 402 

(https://toppgene.cchmc.org) and CSEA tool (http://genetics.wustl.edu/jdlab/csea-tool-2/) 403 

which used to do the functional annotation of genes were all freely accessible. All data 404 

needed to evaluate the conclusions in this study are present in the article and the 405 

Supplementary Materials.  406 
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Results 407 

The cerebellar network-specific genes derived based on the functional segregation 408 

within the cerebellum 409 

The genes that were expressed much more in one network than in all the other six networks 410 

in the cerebellum and cerebral cortex were identified based on the differential gene 411 

expression analysis and are referred to as cerebellar network-specific genes and cortical 412 

network-specific genes, respectively. We identified 443 cerebellar network-specific genes 413 

(Supplementary Sheets 1 and 3) using all samples from six donors across 7 networks. The 414 

distribution of these network-specific genes is shown in Table 1 (Supplementary Sheet 2), 415 

which shows that these were mainly expressed in the limbic (n = 170), dorsal attention (n 416 

= 51), somatomotor (n = 3), and visual (n = 221) networks.  417 

Table 1. Counts of significant differentially expressed genes within each network 418 

compared to other networks, referred to as the network-specific genes. 419 

Networks Cerebellum Cortex Overlapping genes 

Control 0 33 0 

Default 0 25 0 

Dorsal Attention 51 80 0 

Limbic 170 2920 56 

Ventral Attention 0 103 0 

SomatoMotor 3 960 2 

Visual 221 3586 33 

Total (unique) 443 6987 90 

 420 
The cerebellar (n = 443, left column, Supplementary Sheets 2 and 3) and cortical network-421 
specific genes (n = 6987, middle column, Supplementary Sheets 7 and 8) were defined 422 
across the cerebellar [21] and cortical [34] 7-network strategies, respectively. The 423 
rightmost column measures the overlap between the cerebellar and cortical network-424 
specific genes for each network (Supplementary Sheets 9 and 10). 425 
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To test the specificity of these 443 network-specific genes in reflecting the difference 426 

of gene expression across task-free cerebellar functional atlas, we applied the differential 427 

expression analysis with the same procedure in other different cerebellar atlases (see more 428 

details in “Methods”). More overlaps between these 443 network-specific genes with the 429 

differentially expressed genes were observed in the different resolution of the same task-430 

free functional atlas, whereas less in the independent task-based functional atlas and 431 

different resolutions of the lobular atlas (Supplementary Sheet 4). We also tested the 432 

sensitivity of network-specific genes in only four left-hemisphere donors with the same 433 

procedure and observed 230 cerebellar network-specific genes (Supplementary Sheet 5) 434 

with preferentially expressed in the limbic (n = 49, overlap = 44) and visual (n = 181, 435 

overlap = 97) networks.  436 

Meanwhile, we obtained 6,987 cortical network-specific genes (Supplementary Sheets 437 

6−8 and Table 1) using the same strategy and found that the cerebellar and cortical 438 

network-specific genes distribution patterns across 7-network parcellation were highly 439 

correlated (r = 0.95, p = 0.001). Moreover, we found that 90 of these 443 cerebellar 440 

network-specific genes (~20%) (Supplementary Sheets 9 and 10 and Table 1) were 441 

convergently expressed in the cerebral cortex (overlap in limbic = 56, somatomotor = 26, 442 

visual = 33). These results mean that the 56 limbic genes were differentially expressed in 443 

the limbic cortex and the limbic cerebellum and that the two somatomotor genes were 444 

differentially expressed in the somatomotor cortex and somatomotor cerebellum, as well 445 

as the 33 overlap genes in the visual network. 446 

The co-expression of the cerebellar network-specific genes highly correlated with 447 

intra-cerebellar FC 448 
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Using the 443 cerebellar network-specific genes, we constructed the gene co-expression 449 

matrix for the two bi-hemisphere donors and explored the relationship between gene 450 

correlation and FC within the cerebellum. Noted, the 443 network-specific genes were 451 

defined based on 7-nework parcellation, while the genetic co-expression was constructed 452 

using 17-network parcellation to increase the spatial precision. Across all the available 453 

network-network pairs, the genetic co-expression correlates with the FC within the 454 

cerebellum (r = 0.48, pSA = 0.008, Fig. 2), which remains significant when assessed by the 455 

spatial autocorrelation (SA) preserving strategy. This correlation between gene co-456 

expression and FC was referred to as Gene-FC correlation throughout the present paper for 457 

simplicity. To validate the Gene-FC correlation within the cerebellum, we also leveraged 458 

the different resolution of the same task-free functional atlas and the independent task-459 

based MDTB functional parcellation [20] to re-perform the aforementioned steps (Fig. 2D). 460 

The gene co-expression and FC within the cerebellum also correlated when analyzed based 461 

on the 7-network parcellation (Figs. 2D and S2): r = 0.76, pSA = 0.006, and the MDTB 462 

functional parcellation (Figs. 2D and S3): r = 0.42, pSA < 0.001. Moreover, this Gene-FC 463 

correlation was also obtained using unrelated participants from HCP S1200 release 464 

(Supplementary Sheet 17): r = 0.49, pSA = 0.010, and another independent HCP-Aging 465 

neuroimaging dataset (Supplementary Sheet 18): r = 0.45, pSA = 0.013. 466 
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 467 

Fig. 2. Network-specific gene co-expression correlates with functional connectivity 468 
(FC) within the cerebellum. A Genetic correlation was shown by the co-expression matrix 469 
(Supplementary Sheet 11) constructed for two bi-hemisphere donors across ten cerebellar 470 
networks using 443 cerebellar network-specific genes derived from all six donors. The 10 471 
cerebellar networks corresponded to the networks containing samples from both bi-472 
hemisphere donors (Table S3). *p ≤ 0.05 (Bonferroni corrected). B The FC matrix 473 
(Supplementary Sheet 12) shows the functional correlation for the ten cerebellar networks 474 
using 1,018 subjects from the HCP S1200 release [41]. All passed the significant threshold 475 
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p ≤ 0.01 (Bonferroni corrected). C The probability distribution of null models preserving 476 
genetic spatial autocorrelation generated by BrainSMASH. The vertical black dashed lines 477 
correspond to the p values of 0.05 and 0.95; the blue vertical line showed the practical 478 
observed Gene-FC correlation (r = 0.48) and the corresponding pSA = 0.008. D The overall 479 
intra-cerebellar Gene-FC correlation using different atlases: task-free 7-network (orange), 480 
17-network (red) parcellation of the cerebellar functional atlas based on the cerebello-481 
cortical FC, and task-based MDTB functional parcellation (blue) based on the task 482 
activation pattern. The Pearson’s correlation r and pSA values are shown by the 483 
corresponding colors. E The GCI+ (n = 246, left, red) and GCI− (n = 197, right, blue) gene 484 
lists were displayed on the flattened shape of the cerebellum. The word size and color 485 
intensity both indicate the GCI value. 486 

Therefore, the 443 cerebellar network-specific genes that we derived based on the 487 

functional segregation of the cerebellum also correlated with the functional integration of 488 

the cerebellum. This Gene-FC correlation was not generated by the genetic SA, so it was 489 

consistently significant whenever using unrelated participants from HCP, independent 490 

HCP-Aging dataset, different parcellation resolution, or independent cerebellar functional 491 

atlas for the calculation. Moreover, the control test exhibited no Gene-FC correlation when 492 

the gene co-expression was constructed using non-network-specific genes (Supplementary 493 

Sheet 19) regardless of whether using a threshold or not. These findings confirmed that 494 

these 443 network-specific genes play a crucial role in intra-cerebellar functional 495 

organization. 496 

Convergently expressed genes among the cerebellar and cortical network-specific 497 

genes correlated with the FC across the cerebello-cortical cognitive-limbic networks 498 

Since 90 of the 443 cerebellar network-specific genes were convergently expressed across 499 

the cerebello-cortical circuit, we wanted to know whether these ~20% genes correlated 500 

with the FC across the cerebello-cortical circuit. A correspondence between the genetic 501 

and functional correlations was identified for the limbic (Fig. 3A): r = 0.36, p = 0.030 (FDR 502 

corrected), and control networks (Fig. 3B): r = -0.33, p = 0.034 (FDR corrected), but was 503 
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not significant for the somatomotor: r = -0.15, p = 0.394 (FDR corrected), dorsal attention: 504 

r = -0.19, p = 0.281 (FDR corrected), ventral attention: r = -0.04, p = 0.779 (FDR corrected), 505 

or default: r = 0.10, p = 0.544 (FDR corrected) networks. The high cortical genetic 506 

similarity between the limbic system and the adjacent control network: r = -0.90, p < 0.001 507 

(FDR corrected), somatomotor network: r = -0.55, p < 0.001 (FDR corrected), and ventral 508 

attention network: r = -0.72, p < 0.001 (FDR corrected) indicates that the gene co-509 

expression between the cerebellar limbic network and the cortex reflects a gradual genetic 510 

gradient rather than genetic dissimilarity between the cerebellar limbic network and the 511 

other cerebellar networks. In addition, while controlling the effect of the cortical genetic 512 

similarity between the limbic and control networks, the partial correlation showed no 513 

cortical Gene-FC correlation for the control network: r = -0.13, p = 0.316. It implies that 514 

the significant cortical Gene-FC correlation for the control network could be explained by 515 

the high cortical genetic similarity between the cerebellar limbic and control networks. 516 

This observation is also consistent with the finding that convergently expressed genes were 517 

only observed in the limbic network but not in the control network (Table 1). Overall, these 518 

443 cerebellar network-specific genes not only correlated with the intra-cerebellar FC, but 519 

~20% of them were also linked with the cerebello-cortical cognitive-limbic networks. 520 
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 521 

Fig. 3. Cortical genetic and functional correlation of cerebellar limbic and control 522 
networks seeds. Both were calculated for two bi-hemisphere donors across six cerebellar 523 
networks and 59 cortical parcels that contained samples from both bi-hemisphere donors. 524 
A Limbic: the cortical gene co-expression (Supplementary Sheet 20) was calculated using 525 
the 90 overlapping genes between the cerebellar and cortical network-specific genes by 526 
Spearman’s correlation. The FC across each cerebellar network with each cortical parcel 527 
was calculated using Pearson’s correlation (Supplementary Sheet 21). The cortical limbic 528 
genetic and functional correlations were correlated with each other: r = 0.36, p = 0.030 529 
(FDR corrected). B Control: the cortical gene co-expression and the FC for the control 530 
network were correlated with each other: r = -0.33, p = 0.034 (FDR corrected). Notice that 531 
the color bar of gene co-expression was inverted considering the negative Gene-FC 532 
correlation for the control network. 533 

Functional annotation revealed distinct biological properties of GCI+ and GCI− 534 

separated by virtual KO  535 

In addition to the overall correlation between gene co-expression and the functional 536 

integration of the human cerebellum, we investigated each gene’s importance to the intra-537 

cerebellar Gene-FC correlation by scoring the 443 cerebellar network-specific genes based 538 

on the GCI. Using the virtual gene KO procedure (see more details in “Methods”), we were 539 

able to classify the 443 network-specific genes that linked cerebellar functional segregation 540 

and integration into two groups: a 246 GCI positive gene set (GCI+, Fig. 2E left and 541 
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Supplementary Sheet 22) and a 197 GCI negative gene set (GCI−, Fig. 2E right and 542 

Supplementary Sheet 23). The distinction between the two sets is that the virtual KO of 543 

GCI+ genes increased the Gene-FC correlation, whereas the virtual KO of GCI− genes 544 

decreased the Gene-FC correlation. Based on the winner-take-all principle, GCI− genes 545 

may have a critical impact on the functional organization of the cerebellum. An example 546 

is that the top genes, LCP1 and TESC, enable GTPase binding and calcium binding, 547 

respectively [53], which are key functions within signaling transduction and consequently 548 

brain functions. Therefore, we applied a range of functional annotation tools to further 549 

explore the underlying roles of the GCI+ and GCI−.  550 

Behavior-FC-Gene mapping analysis 551 

Since these genes largely engaged in the cerebellar functional network which could predict 552 

human behaviors, whether they also involved in human behaviors with the FC acting as an 553 

intermediary role? We leveraged the Behavior-FC-Gene mapping analysis (see more 554 

details in methods) to explore the relationship between the co-expression of GCI+ and GCI− 555 

with the human behaviors. Based on the PCA of 59 behavior measures (Table S6) across 556 

211 HCP unrelated participants, 8 significant PCs were derived (Supplementary Sheet 24). 557 

Then the Behavior-FC map of each significant PC calculated by mass univariate regression 558 

procedure was compared with the co-expression pattern of GCI+ and GCI− respectively 559 

(Supplementary Sheet 25). Among the eight significant PCs, we observed correlations of 560 

the Behavior-FC maps of PC1, PC3, and PC4 (Supplementary Sheet 25) with the GCI− co-561 

expression, rather than the GCI+.  562 

But the PC1 and PC4 had few regression coefficients (1.47% and 0.74%, respectively) 563 

in the Behavior-FC map that survived the permutation test (Supplementary Sheet 25) 564 
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compared with PC3 (Figs. 4B and S4). These significant Behavior-FC regression 565 

coefficients mainly occurred in the connections between default, control, and somatomotor 566 

networks with others (Fig. 4C), such as the connection between default B network with 567 

somatomotor A, somatomotor B, ventral attention A, limbic pole, and default A networks. 568 

Taking the intra-cerebellar FC as an intermediate role, PC3 had a significant correlation 569 

with the GCI− co-expression (Fig. 4E, F): r = 0.67, permutation test p < 0.001. In contrast, 570 

no correlation between GCI+ co-expression and PC3 Behavior-FC map: r = 0.27, p > 0.05. 571 

Based on the loading pattern of PC3 for the original 59 behavior measures, the PC3 reflects 572 

the variation in the emotion-cognitional behavior measures (Fig. 4A). Specifically, PC3 573 

has a large positive loading for the number of correct responses in emotion recognition, 574 

executive function, and fluid ability of cognition tasks, whereas it has a large negative 575 

loading for the response time in emotion recognition and fluid intelligence tasks. It suggests 576 

a high PC3 score might reflect high emotion and cognition ability. This Behavior-FC-Gene 577 

mapping analysis revealed that the GCI− not only plays an important profiling role in the 578 

functional organization of the cerebellum but also implicates emotion-cognitional behavior 579 

vicariously through the intra-cerebellar FC.   580 
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Fig. 4. The Behavior-FC-Gene mapping analysis. A The loading pattern of principal 582 
component 3 (PC3) for the original 59 behavior measures (Table S6) was obtained from 583 
principal component analysis (PCA). The word sizes represent the absolute values of the 584 
loading coefficients, and the different colors indicate the six categories of the behaviors 585 
(Table S6). B Behavior-FC map for PC3, which are the z-scored regression coefficients of 586 
PC3 in each intra-cerebellar functional connection via mass univariate regression 587 
procedure. C The chord plot shows the significant regression coefficients after the 588 
permutation test consisting of 10,000 permutations. The circularly arranged gray histogram 589 
shows the absolute magnitudes of the regression coefficients, which correspond to the 590 
values of the regression coefficients shown in B. The color intensity of chords is the same 591 
as the color bar of B. D The GCI− gene set which used to construct the GCI− co-expression 592 
map E. F The chord plot shows the significant correlations: p ≤ 0.05 (Bonferroni corrected). 593 
The circularly arranged grey histogram shows the absolute magnitudes of the correlation 594 
coefficients, which correspond to the values of the correlation coefficients shown in E. The 595 
color intensity of chords is the same as the color bar of E. 596 

GO, pathway, and disorder enrichment analysis 597 

The GO enrichment analysis of the GCI+ and GCI− is shown in Fig. 5A. The GCI+ was 598 

mainly enriched in microtubule-related terms, including the microtubule associated 599 

complex (ID: 0005875), motile cilium (ID: 0031514), and dynein complex (ID: 0030286). 600 

Compared with GCI+, the GCI− was not only enriched in microtubule-related terms but was 601 

also significantly enriched in terms related to neurotransmitter transport, such as calcium 602 

ion binding (ID: 0005509), regulation of hormone levels (ID: 0010817), response to 603 

catecholamine (ID: 0071869), response to monoamine (ID: 0071867), and regulation of 604 

neurotransmitter receptor activity (ID: 0099601). These findings are consistent with their 605 

different pathway enrichment results (Supplementary Sheets 26 and 27) in that the GCI+ 606 

was primarily enriched in some basic biological pathways: proximal tubule bicarbonate 607 

reclamation (ID: M4361) and glycolysis/gluconeogenesis (ID: M39474), which provides 608 

the energy needed during microtube-related processes. In contrast, the GCI− was primarily 609 

involved in signaling transduction, especially in some neurotransmission pathways, such 610 

as the neuroactive ligand-receptor interaction (ID: M13380).   611 
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 612 

Fig. 5. The gene ontology (GO) and disease enrichment analysis for GCI+ and GCI−. 613 
A Bubble plots showing the GO enrichment top 20 terms for GCI+ (left) and GCI− (right) 614 
(Complete results are shown in Supplementary Sheets 26 and 27, respectively). The 615 
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biological process (BP), cellular component (CC), and molecular function (MF) are 616 
displayed together. The dot size (count) represents the number of genes that are within the 617 
interest GCI+ or GCI− gene panels as well as a specific GO term (y-axis). The different 618 
color intensities indicate the p value (FDR corrected). B Gradient bar plots showing the 619 
disease enrichment for all representative results for GCI+ and top 15 representative terms 620 
for GCI−. The different color intensities indicate the p value (FDR corrected). 621 

Since the GCI+ and GCI− are involved in different biological processes, we 622 

hypothesized that they also play different roles in brain disease or are related to different 623 

brain diseases. Unexpectedly, we found no link between GCI+ and any brain-related 624 

illnesses (Fig. 5B, left) but observed involvement of GCI− in various neuropsychiatric 625 

disorders (Fig. 5B, right), including autistic disorder (ID: C0004325), alcoholic 626 

intoxication (ID: C0001973), mental depression (ID: C0011570), pain (ID: C0030193), 627 

learning disorders (ID: C0023186) and others (Supplementary Sheet 27). Many of these, 628 

especially mental depression and autistic disorder, have a close relationship with the human 629 

cerebellum, in which patients have shown FC abnormalities [54, 55]. The mental 630 

depression- and autistic disorder-associated genes were TRH, PENK, TTR, ADCY5, 631 

NRXN1, HTR1A, HTR2C, NTS, PEX5L (n = 9, Supplementary Sheet 27), and DLGAP2, 632 

TRH, PENK, RYR3, SEMA3A, NRXN1, TESC, ABCG2, PCDH10, CNTN4, HTR1A, 633 

CALB2, HTR2C, DNAAF4, FOLR1, NTS, GRM8, UPP2 (n = 18, Supplementary Sheet 634 

27), respectively, and the overlapping genes were TRH, PENK, NRXN1, HTR1A, HTR2C, 635 

NTS (n = 6). 636 

Integrative temporal specificity analysis 637 

In light of the distinct properties of GCI+ and GCI−, we wanted to know whether the roles 638 

played by these two gene sets showed variable prevalence at different ages. By leveraging 639 

the BrainSpan dataset [56] and applying the analysis strategy of the CSEA tool [52], we 640 
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found that GCI+ showed significant overexpression in early middle fetal, late middle fetal, 641 

late fetal, neonatal early infancy, and adolescence compared with GCI− (Fig. 6A). These 642 

stages neatly correspond to the timeline of the protracted development of the human 643 

cerebellum [57], which extends from the early embryonic period until the end of the first 644 

postnatal year. This result appears to be consistent with the observation that the GCI+ is 645 

involved in some fundamental biological processes, especially microtubule-related activity, 646 

whose dynamics play a key role in cerebellar neurodevelopment [58]. In contrast, 647 

compared with the GCI+, the GCI− was significantly expressed in early mid fetal, neonatal 648 

early infancy, late infancy, early childhood, adolescence, and young adulthood (Fig. 6B). 649 

These periods include the highest neurodevelopmental risk windows for autism spectrum 650 

disorder (ASD) [59] and major depression disorder (MDD) [60], both of which also existed 651 

in the disease enrichment analysis of GCI−. 652 

 653 
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Fig. 6. Integrative temporal specificity analysis within the human cerebellum for 654 
GCI+ and GCI−. A Bar plot showing the temporal specificity results for GCI+. The 655 
specificity index probability (pSI = 0.05, 0.01, 0.001, and 0.0001, permutation corrected, 656 
shown as different color intensities) was used to determine how likely a gene was to be 657 
expressed in a given time window relative to all other time windows [52]. The x-axis 658 
corresponds to the -log10p (FDR corrected), and for esthetics if -log10p (FDR corrected) > 659 
2.5, -log10p (FDR corrected) = 2.5; the y-axis represents the 10 development windows 660 
collected by BrainSpan [56]. The vertical dark dashed line corresponds to the p (FDR 661 
corrected) = 0.05. Complete results are shown in Supplementary Sheet 28. B Bar plot 662 
showing the temporal specificity results for GCI−.   663 
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Discussion 664 

The current study provided a tentative exploration of the genetic differential and co-665 

expression linked with the functional organization of the human cerebellum and has the 666 

potential for elaborating and rethinking the neurobiological underpinnings of the cerebellar 667 

functional organization. Furthermore, we identified two gene sets involved in cerebellar 668 

neurodevelopment and neurotransmission and found indirect but interesting genetic 669 

evidence supporting a key role played by the cerebellar functional network in emotion-670 

cognitional behaviors, as well as many neuropsychiatric disorders. These findings hint at a 671 

micro-macro interacted mechanistic possibility for the cerebellar contributions to emotion-672 

cognitional behaviors, and consequently to related neuropsychiatric disorders.  673 

The genetic profiles underlying cerebellar functional segregation correlate with intra-674 

cerebellar and cerebello-cerebral connections 675 

In this study, we found correlations between the identified cerebellar network-specific 676 

genes with the intra-cerebellar connection and cerebello-cerebral FC. These findings could 677 

provide possible empirical genetic support for the hypothesized decisive role of cerebellar 678 

connectivity in the functional heterogeneity of the cerebellum. First, while obtaining the 679 

network-specific genes, we found significant differences in the number of identified genes 680 

between the functional specificity (i.e., limbic, visual networks) and functional diversity 681 

networks (i.e., the control, default networks); specifically, more differentially expressed 682 

genes were in the former and vice versa in the latter [61]. This observation was also found 683 

in a previous cortical gene expression homogeneity analysis [9] that showed that a 684 

relatively high differential expression pattern was observed in the primary sensory cortex, 685 

area 38, and the primary visual cortex. But the findings related to the inconsistency in the 686 
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amount of somatomotor cerebellar (n = 3) and somatomotor cortical network-specific 687 

genes (n = 960) were unclear. One possible explanation may be that the preferential links 688 

between the cerebellar representations of body space and the motor, somatosensory, and 689 

premotor cortices are challenging to distinguish [21]. The finding of cerebellar network-690 

specific genes is consistent with the elaborate regional difference in cerebellar-cortical 691 

cytoarchitecture [2, 62] in addition to the uniform cell types and their connectivity, such as 692 

regional variation in the cell size and packing density of Purkinje, granule, and Golgi cells. 693 

Second, the overall distribution patterns of the cerebellar and cortical network-specific 694 

genes were highly correlated, a finding in line with a similar macroscale principle identified 695 

in the cerebellar and cortical functional organization [23, 63]. These correlated patterns 696 

may be related to defining the cerebellar networks, which were by projecting the cerebral 697 

cortical networks onto the cerebellum by computing the functional connections between 698 

the two structures [21]. More interestingly, the molecular genetic substrates simultaneously 699 

linking functional heterogeneity and integration could be observed across different 700 

functional subdivisions, regardless of whether the parcellation was based on the task-free 701 

cerebello-cortical FC [21] or the intra-cerebellar task-based activation pattern [20]. These 702 

interpretations are further supported by the widely accepted notion about the human 703 

cerebellum that its functional specialization is dominated more by its connection with 704 

extra-cerebellar structures than within its generally homogeneous cytoarchitecture [8]. 705 

Although no intra-cerebellar anatomical fiber connections linking adjacent or distant 706 

cerebellar regions have been observed [64, 65], it is well recognized that the intra-707 

cerebellar functional map is a consequence of the topological arrangement of its extra-708 

cerebellar anatomical connections [8]. This fact is especially important to note when 709 
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explaining the Behavior-FC results that although our results were obtained through intra-710 

cerebellar connections, the cerebellar-cortical connections must also be involved actually. 711 

The proposed relationship between extra- and intra-cerebellar connectivity, in turn, can be 712 

expected to affect the resting-state activity between cerebellar regions [23]. Furthermore, 713 

for the interaction between gene and FC, they influence one another bidirectional [66] 714 

through gene-environment (G-E) interplay [67] with the development as an essential 715 

element [68], instead of a unidirectional determination role of the genes in the brain 716 

connection. Here we observed the Gene-FC interaction from the adult perspective (AHBA 717 

donors aged from 24 to 57 years old), which lacks exploration in the G-E interplay 718 

compared with the early development [68]. 719 

Third, in addition to the intra-cerebellar Gene-FC correlation, we observed a direct 720 

correlation between genes underlying the cerebellar functional specialization and 721 

cerebello-cerebral FC of the limbic and control networks. The Gene-FC correlation in the 722 

control network was mainly caused by the genetic similarity between these two networks; 723 

this interaction between limbic-emotion and control-cognition has been confirmed 724 

anatomically and behaviorally [69]. For instance, the integrated processing by the emotion 725 

and cognition areas has been identified solely based on their anatomical connections [70]. 726 

This relationship can also be observed in that when looking at the top of a hill, a sad mood 727 

induces a steeper perception of the hill than a happy one [71]. One possible reason why we 728 

only obtained this correspondence in the limbic network may be the low functional 729 

heterogeneity [61] and inter-individual functional variability [72] of the limbic network 730 

compared with others as well as the complexity of gene expression; i.e., the Gene-FC 731 

correlation is not fully portrayed by the differentially expressed genes [26]. Considering 732 
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the indirect connection between cerebellum and cortex, and large differences between the 733 

cerebellum and cortex in terms of their gene expression patterns [13] and structure-function 734 

relationships [73], as well as the individual variability of their functional networks [75], 735 

the convergently expressed genes associated with the cerebello-cortical cognitive-limbic 736 

networks were evident through simple analysis of co-expression, demonstrating these 737 

genes are very significant and may hold clues to the molecular underpinnings of the 738 

cognitive-emotion roles played by the cerebello-cortical circuit. For example, the HTR1A 739 

and HTR2C, both preferentially expressed in the cerebellar and cortical limbic network, 740 

are pivotal genes in serotonin transmission and play a modulation role in the limbic system 741 

act as important therapeutic targets in limbic system-related disorders [74]. This 742 

observation was further confirmed by the intra-cerebellar Behavior-FC-Gene mapping 743 

analysis, which showed that some of the genes were strongly associated with the emotion-744 

cognitional behaviors. 745 

Cerebellar neurodevelopment feature of GCI+, cerebellar neurotransmission, 746 

emotion-cognitional behavior, and neuropsychiatric related features of GCI− 747 

Interestingly, we identified two gene subsets with pronouncedly different characteristics 748 

based solely on the direction in which each gene influenced the intra-cerebellar Gene-FC 749 

correlation by applying a simple virtual KO approach on the 443 cerebellar network-750 

specific genes. By using a series of bioinformatic tools, we found converging evidence for 751 

GCI+ and GCI− involvement in cerebellar neurodevelopment and cerebellar 752 

neurotransmission, respectively. It is also interesting to speculate that these 443 network-753 

specific genes that link both cerebellar functional segregation and integration have a 754 

relationship with some brain disorders since prior evidence showed that the cerebellar 755 
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functional organization plays a key role in various neurological [30, 75] and psychiatric 756 

disorders [29], most of which possess common underlying genetic risks [76]. But a tricky 757 

problem emerged in that the genes we are interested in were derived from healthy 758 

individuals. It could be tackled to some extent by using the virtual KO method, which can 759 

simulate the different expression levels of each gene and thus coarsely corresponds to a 760 

fraction of the expression level under normal health and disease situations. This is why we 761 

thought that we might be able to see whether the GCI+ and GCI− are related to a specific 762 

disease even though the genes were derived from healthy individuals. 763 

The GCI+ is involved in many microtubule-related terms and is overexpressed 764 

throughout the protracted development of the cerebellum. The dynamics and flexibility of 765 

microtubules were found to be essential throughout cerebellar development via leading the 766 

morphological alterations of Purkinje cells [58]. In addition, some genes of the GCI+, such 767 

as GTPBP2 [77] and Lin28b [78], were found to play a key role in neurodevelopment; 768 

overexpression of the Lin28b gene can induce the development of pathological lobulation 769 

in the cerebellum [78]. This converging evidence prompts our speculation that the GCI+ is 770 

engaged in cerebellar neurodevelopment. Unexpectedly, the GCI+ showed no link to brain-771 

related diseases, which appears to be consistent with its primary involvement in many 772 

fundamental biological functions. However, this lack of disease linkage is inconsistent with 773 

the significant overexpression of GCI+ genes during the protracted development of the 774 

cerebellum. Many researchers pointed out that this protracted development increased the 775 

susceptibility of the cerebellum to many psychiatric disorders [57]. It is likely 776 

complemented by the overexpression of GCI− in the early middle fetal and neonatal early 777 

infancy periods. Other possible explanations include few genetic studies of the cerebellum 778 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2021.06.23.448673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.448673
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 / 57 
 

compared with the cerebral cortex, and large gene expression differences between the 779 

cerebellum and extra-cerebellar structures [13], so the related datasets may lack sufficient 780 

information specific to the cerebellum. It calls for future studies to provide a complete 781 

explanation by considering multiple perspectives. 782 

The GCI− was found to be related to emotion-cognitional behaviors, involved in many 783 

neurotransmission processes, enriched in various neurological and psychiatric disorders, 784 

and significantly overexpressed in late infancy, early childhood, adolescence, and young 785 

adulthood compared with GCI+. These results are mutually supportive. The 786 

neurotransmission has long been believed to play a crucial role in emotional [79] and 787 

cognitional behaviors [80], and its abnormality has been extensively associated with 788 

various neurological [81] and psychiatric disorders [82, 83] with the characteristic of 789 

cognitive and emotional impairments. For example, the abnormal transmission of 790 

monamines and catecholamines, such as serotonin and dopamine, has been widely linked 791 

with many psychiatric disorders, and these transmitters have thus become potential 792 

treatment targets [84]. The period through which the GCI− genes are expressed includes 793 

the high-risk time windows for GCI− enriched disorders, such as mental depression (aged 794 

18–29) [60] and autistic disorder (from infancy to childhood) [59]. And the high expression 795 

of GCI− in early middle fetal life might be associated with the prenatal risk factors 796 

associated with depression [85] and autism [86].  797 

A possible micro-macro interacted mechanistic explanation for the 798 

function/dysfunction of the human cerebellum 799 

The cerebellum regulates motor, emotion, and cognition by functioning as an oscillation 800 

dampener that combines multiple internal representations with external stimuli and 801 
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appropriate responses to maintain the behavior around a homeostatic baseline 802 

automatically to optimize performance according to the cortex [87]. Interestingly, we found 803 

that the GCI− associated with the emotion-cognitional behaviors via the intra-cerebellar FC, 804 

mainly includes the connections between control, default, and somatomotor networks 805 

which have been widely confirmed to be involved in these behaviors via human clinical 806 

data or functional imaging studies [4, 88-90]. This result suggests that the interaction 807 

between genes and FC is also involved in various higher functions of the cerebellum, 808 

providing new evidence and molecular substrates for the progressively complete notion 809 

that the cerebellum modulates cognition and emotion as it does to the motor control [1]. 810 

Beyond that, the specifics of how the cerebellum is involved in emotional and cognitive 811 

functions are explained by many compatible theories [87]. Such as the internal model [91], 812 

in which the cerebellum shows increased activations for negative feedback compared to 813 

the positive feedback in the reversal-learning task [92], which is maybe consistent with the 814 

negative Behavior-FC map found in the present study.  815 

Meanwhile, the regions that showed a significant correlation between emotion-816 

cognitional behaviors and GCI− via connections, correspond exactly to the cerebellar 817 

posterior lobe whose lesions produce the dysmetria of thought and emotion, i.e., the 818 

cerebellar cognitive affective syndrome, which is characterized by the deficits in executive 819 

function, visual-spatial processing, linguistic skills and affect regulation [93]. And no 820 

significant difference in the performance on newly established objective cognitive tests 821 

battery between patients with isolated cerebellar lesions versus complex cerebello-cortical 822 

connection disorders, such as schizophrenia, mental depression, and autistic disorder [94]. 823 

It is thus reasonable and mutually validating that we found that the GCI− enriched in many 824 
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neuropsychiatric disorders involving alternation in these two categories of behaviors, 825 

including mental depression, autistic disorder, pain, alcoholic intoxication, learning 826 

disorder, and others. Moreover, these disorders are all closely related to the alterations of 827 

the cerebellar FC [29, 54, 95-97]. 828 

Therefore, the GCI− provides a possible micro-macro interacted mechanistic 829 

explanation for the functions and dysfunctions of the human cerebellum. The genes 830 

underlying the functional organization of the human cerebellum are likely involved in 831 

emotion-cognitional behaviors through their interaction with the cerebellar connection. 832 

One of the possible ways the risk genes act in the pathogenesis of corresponding diseases 833 

maybe through their interactions with the cerebellar FC, which results in dysregulation of 834 

cerebellar FC and thus pathologically manifested as its functional connection abnormalities 835 

and consequently transient or long-term impairment at the cognitive and emotional 836 

behavioral levels of these diseases. For instance, the fluctuation in the correspondence of 837 

the Gene-FC relationship found in the present study and widespread altered cerebellar FC 838 

excavated previously in diverse neuropsychiatric disorders [29]. The GCI− also provides a 839 

promising genetic resource for investigating the cerebellar involvements in emotion-840 

cognitional behaviors and related brain diseases. For example, the observed overlapping 841 

genes, i.e., NRXN1, are associated with mental depression and autistic disorder supported 842 

previous clinical studies showing that rare and common variants in NRXN1 carried risks 843 

for MDD [98], ASD, and schizophrenia [99]. And HTR1A, which has a high expression in 844 

the cerebellum [14] and has been linked to the cognitive process in both animal models and 845 

human [79], was found to be involved in pain, mental depression, autistic disorder, 846 

alcoholic intoxication, learning disorder, and other conditions (Supplementary Sheet 27).  847 
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Methodological considerations 848 

The interpretation of our findings is not without limitations. First, we validated our results 849 

across independent imaging datasets that cover the age range of AHBA, and various 850 

cerebellar atlases with different parcellation criteria and resolutions. But we are unable to 851 

test our results in an independent gene dataset as there is no other publicly available dataset 852 

with a detailed sampling of subregions of the human cerebellum. Second, the gene co-853 

expression we constructed only considered one small part of the relationship between the 854 

genes and FC. Thereby it did not fully recapitulate the complexity of the brain 855 

transcriptome, such as gene-gene interactions [100]. That is one possible reason we only 856 

found a cerebello-cortical Gene-FC correlation for the cognitive-limbic networks. Third, 857 

the simple correlation approach [25, 61] used in this study and other linear regression 858 

models like partial least squares analysis [101], can only prioritize genes for further 859 

investigation and cannot fully explore the causal relationship between genes and functional 860 

organization. As a result, further exploration is hindered by the intricacies of genetic and 861 

epigenetic regulation. It makes the discussion and explanation of the different directions of 862 

this correlation challenging. For example, why the direction of influence on the Gene-FC 863 

correlation could separate these 443 genes into two distinct gene sets with different 864 

functions remains unclear. Hence further related exploration is necessary but very 865 

challenging. Fourth, since the 443 genes were not derived based on the correlation with a 866 

spatially-defined phenotype, the newly proposed strategy [102] that mitigates the bias of 867 

leveraging gene enrichment approach in the spatial transcriptomic data cannot be directly 868 

utilized. Nonetheless, it cannot be determined whether this type of bias affects the present 869 

results, which calls for future efforts to develop methods to answer this question.  870 
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Briefly, more donors, the overall pattern of gene expression, gene regulation, 871 

epigenomics, and improved cellular resolution are needed and imperative for developing 872 

more appropriate and ingenious approaches to understand the bidirectional relationship 873 

between genes and functional organization, which is a greater challenge for neuroscience 874 

than just identifying a link between genetic and imaging data. Nevertheless, in light of the 875 

currently limited understanding of how microscale genes contribute to macroscale brain 876 

functional organization, the prioritization of genes and the related functional annotations 877 

presented here are still necessary [24, 26].  878 

Conclusions 879 

In summary, we found that the network-specific genes underlying cerebellar functional 880 

heterogeneity correlated with the intra-cerebellar and cerebello-cerebral FC. It indicates 881 

that the genetic infrastructure associated with functional segregation coalesces to form a 882 

collective system, which closely relates to the functional integration of these functional 883 

subregions. The current study has thus unveiled part of the neurobiological genetic 884 

substrates underlying the cerebellar functional organization. We also identified important 885 

indirect genetic markers that support the key role played by the cerebellar functional 886 

network in emotion-cognitional behaviors and many brain disorders. These findings hint 887 

at the possibility of establishing a cerebellar “gene—connection—function/dysfunction” 888 

chain, as well as of helping to bridge the knowledge gap between the genetic mechanisms 889 

driving the cerebellar functional organization and the predictive markers of behaviors and 890 

heritable risks of disorders, especially major depression and autistic disorder.   891 
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