001     906810
005     20230127125340.0
024 7 _ |2 doi
|a 10.1162/dint_a_00131
024 7 _ |2 ISSN
|a 2096-7004
024 7 _ |2 ISSN
|a 2641-435X
024 7 _ |2 Handle
|a 2128/31434
024 7 _ |2 altmetric
|a altmetric:124465825
024 7 _ |2 WOS
|a WOS:000850893200010
037 _ _ |a FZJ-2022-01707
041 _ _ |a English
082 _ _ |a 020
100 1 _ |0 P:(DE-Juel1)166264
|a Mozaffari, Amirpasha
|b 0
|e Corresponding author
245 _ _ |a HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction
260 _ _ |a Cambridge, MA
|b MIT Press
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1672836914_27125
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Machine learning (ML) applications in weather and climate are gaining momentum as big data and the immense increase in High-performance computing (HPC) power are paving the way. Ensuring FAIR data and reproducible ML practices are significant challenges for Earth system researchers. Even though the FAIR principle is well known to many scientists, research communities are slow to adopt them. Canonical Workflow Framework for Research (CWFR) provides a platform to ensure the FAIRness and reproducibility of these practices without overwhelming researchers. This conceptual paper envisions a holistic CWFR approach towards ML applications in weather and climate, focusing on HPC and big data. Specifically, we discuss Fair Digital Object (FDO) and Research Object (RO) in the DeepRain project to achieve granular reproducibility. DeepRain is a project that aims to improve precipitation forecast in Germany by using ML. Our concept envisages the raster datacube to provide data harmonization and fast and scalable data access. We suggest the Juypter notebook as a single reproducible experiment. In addition, we envision JuypterHub as a scalable and distributed central platform that connects all these elements and the HPC resources to the researchers via an easy-to-use graphical interface.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(BMBF)01IS18047A
|a Verbundprojekt DeepRain: Effiziente Lokale Niederschlagsvorhersage durch Maschinelles Lernen (01IS18047A)
|c 01IS18047A
|x 1
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 2
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)180790
|a Langguth, Michael
|b 1
700 1 _ |0 P:(DE-Juel1)177767
|a Gong, Bing
|b 2
700 1 _ |0 P:(DE-Juel1)167529
|a Ahring, Jessica
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Campos, Adrian Rojas
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Nieters, Pascal
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Escobar, Otoniel José Campos
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Wittenbrink, Martin
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Baumann, Peter
|b 8
700 1 _ |0 P:(DE-Juel1)6952
|a Schultz, Martin G.
|b 9
773 _ _ |0 PERI:(DE-600)2973844-1
|a 10.1162/dint_a_00131
|g p. 1 - 15
|n 2
|p 271-285
|t Data Intelligence
|v 4
|x 2096-7004
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/906810/files/dint_a_00131%20%284%29.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906810
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166264
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180790
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177767
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)167529
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)6952
|a Forschungszentrum Jülich
|b 9
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-07-21T15:11:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-07-21T15:11:27Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-07-21T15:11:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-07-21T15:11:27Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21