Hauptseite > Publikationsdatenbank > HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction > print |
001 | 906810 | ||
005 | 20230127125340.0 | ||
024 | 7 | _ | |2 doi |a 10.1162/dint_a_00131 |
024 | 7 | _ | |2 ISSN |a 2096-7004 |
024 | 7 | _ | |2 ISSN |a 2641-435X |
024 | 7 | _ | |2 Handle |a 2128/31434 |
024 | 7 | _ | |2 altmetric |a altmetric:124465825 |
024 | 7 | _ | |2 WOS |a WOS:000850893200010 |
037 | _ | _ | |a FZJ-2022-01707 |
041 | _ | _ | |a English |
082 | _ | _ | |a 020 |
100 | 1 | _ | |0 P:(DE-Juel1)166264 |a Mozaffari, Amirpasha |b 0 |e Corresponding author |
245 | _ | _ | |a HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction |
260 | _ | _ | |a Cambridge, MA |b MIT Press |c 2022 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1672836914_27125 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Machine learning (ML) applications in weather and climate are gaining momentum as big data and the immense increase in High-performance computing (HPC) power are paving the way. Ensuring FAIR data and reproducible ML practices are significant challenges for Earth system researchers. Even though the FAIR principle is well known to many scientists, research communities are slow to adopt them. Canonical Workflow Framework for Research (CWFR) provides a platform to ensure the FAIRness and reproducibility of these practices without overwhelming researchers. This conceptual paper envisions a holistic CWFR approach towards ML applications in weather and climate, focusing on HPC and big data. Specifically, we discuss Fair Digital Object (FDO) and Research Object (RO) in the DeepRain project to achieve granular reproducibility. DeepRain is a project that aims to improve precipitation forecast in Germany by using ML. Our concept envisages the raster datacube to provide data harmonization and fast and scalable data access. We suggest the Juypter notebook as a single reproducible experiment. In addition, we envision JuypterHub as a scalable and distributed central platform that connects all these elements and the HPC resources to the researchers via an easy-to-use graphical interface. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5111 |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |0 G:(BMBF)01IS18047A |a Verbundprojekt DeepRain: Effiziente Lokale Niederschlagsvorhersage durch Maschinelles Lernen (01IS18047A) |c 01IS18047A |x 1 |
536 | _ | _ | |0 G:(DE-Juel-1)ESDE |a Earth System Data Exploration (ESDE) |c ESDE |x 2 |
536 | _ | _ | |0 G:(DE-Juel-1)ESDE |a Earth System Data Exploration (ESDE) |c ESDE |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-Juel1)180790 |a Langguth, Michael |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)177767 |a Gong, Bing |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)167529 |a Ahring, Jessica |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Campos, Adrian Rojas |b 4 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Nieters, Pascal |b 5 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Escobar, Otoniel José Campos |b 6 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Wittenbrink, Martin |b 7 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Baumann, Peter |b 8 |
700 | 1 | _ | |0 P:(DE-Juel1)6952 |a Schultz, Martin G. |b 9 |
773 | _ | _ | |0 PERI:(DE-600)2973844-1 |a 10.1162/dint_a_00131 |g p. 1 - 15 |n 2 |p 271-285 |t Data Intelligence |v 4 |x 2096-7004 |y 2022 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906810/files/dint_a_00131%20%284%29.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906810 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)166264 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)180790 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)177767 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)167529 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)6952 |a Forschungszentrum Jülich |b 9 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5111 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-07-21T15:11:27Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-07-21T15:11:27Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2020-07-21T15:11:27Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2020-07-21T15:11:27Z |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|