000906811 001__ 906811 000906811 005__ 20230712161210.0 000906811 0247_ $$2doi$$a10.1162/dint_a_00132 000906811 0247_ $$2ISSN$$a2096-7004 000906811 0247_ $$2ISSN$$a2641-435X 000906811 0247_ $$2Handle$$a2128/31435 000906811 0247_ $$2WOS$$aWOS:000850893200011 000906811 037__ $$aFZJ-2022-01708 000906811 041__ $$aEnglish 000906811 082__ $$a020 000906811 1001_ $$0P:(DE-HGF)0$$aWittenburg, Peter$$b0$$eCorresponding author 000906811 245__ $$aCanonical Workflows to Make Data FAIR 000906811 260__ $$aCambridge, MA$$bMIT Press$$c2022 000906811 3367_ $$2DRIVER$$aarticle 000906811 3367_ $$2DataCite$$aOutput Types/Journal article 000906811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672836893_22540 000906811 3367_ $$2BibTeX$$aARTICLE 000906811 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000906811 3367_ $$00$$2EndNote$$aJournal Article 000906811 520__ $$aThe FAIR principles have been accepted globally as guidelines for improving data-driven science and data management practices, yet the incentives for researchers to change their practices are presently weak. In addition, data-driven science has been slow to embrace workflow technology despite clear evidence of recurring practices. To overcome these challenges, the Canonical Workflow Frameworks for Research (CWFR) initiative suggests a large-scale introduction of self-documenting workflow scripts to automate recurring processes or fragments thereof. This standardised approach, with FAIR Digital Objects as anchors, will be a significant milestone in the transition to FAIR data without adding additional load onto the researchers who stand to benefit most from it. This paper describes the CWFR approach and the activities of the CWFR initiative over the course of the last year or so, highlights several projects that hold promise for the CWFR approaches, including Galaxy, Jupyter Notebook, and RO Crate, and concludes with an assessment of the state of the field and the challenges ahead. 000906811 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000906811 536__ $$0G:(EU-Grant)787576$$aIntelliAQ - Artificial Intelligence for Air Quality (787576)$$c787576$$fERC-2017-ADG$$x1 000906811 536__ $$0G:(BMBF)01IS18047A$$aVerbundprojekt DeepRain: Effiziente Lokale Niederschlagsvorhersage durch Maschinelles Lernen (01IS18047A)$$c01IS18047A$$x2 000906811 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x3 000906811 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x4 000906811 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000906811 7001_ $$0P:(DE-HGF)0$$aHardisty, Alex$$b1 000906811 7001_ $$0P:(DE-HGF)0$$aFranc, Yann Le$$b2 000906811 7001_ $$0P:(DE-Juel1)166264$$aMozaffari, Amirpasha$$b3$$ufzj 000906811 7001_ $$0P:(DE-HGF)0$$aPeer, Limor$$b4 000906811 7001_ $$0P:(DE-HGF)0$$aSkvortsov, Nikolay A.$$b5 000906811 7001_ $$0P:(DE-HGF)0$$aZhao, Zhiming$$b6 000906811 7001_ $$0P:(DE-HGF)0$$aSpinuso, Alessandro$$b7 000906811 773__ $$0PERI:(DE-600)2973844-1$$a10.1162/dint_a_00132$$gp. 1 - 20$$n2$$p286–305$$tData Intelligence$$v4$$x2096-7004$$y2022 000906811 8564_ $$uhttps://juser.fz-juelich.de/record/906811/files/dint_a_00132%20%281%29.pdf$$yOpenAccess 000906811 909CO $$ooai:juser.fz-juelich.de:906811$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000906811 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000906811 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000906811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17 000906811 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17 000906811 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-07-21T15:11:27Z 000906811 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-07-21T15:11:27Z 000906811 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-07-21T15:11:27Z 000906811 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-07-21T15:11:27Z 000906811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17 000906811 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-17 000906811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17 000906811 9141_ $$y2022 000906811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166264$$aForschungszentrum Jülich$$b3$$kFZJ 000906811 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000906811 920__ $$lno 000906811 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000906811 980__ $$ajournal 000906811 980__ $$aVDB 000906811 980__ $$aI:(DE-Juel1)JSC-20090406 000906811 980__ $$aUNRESTRICTED 000906811 980__ $$aOPENSCIENCE 000906811 9801_ $$aFullTexts