001     906811
005     20230712161210.0
024 7 _ |2 doi
|a 10.1162/dint_a_00132
024 7 _ |2 ISSN
|a 2096-7004
024 7 _ |2 ISSN
|a 2641-435X
024 7 _ |2 Handle
|a 2128/31435
024 7 _ |2 WOS
|a WOS:000850893200011
037 _ _ |a FZJ-2022-01708
041 _ _ |a English
082 _ _ |a 020
100 1 _ |0 P:(DE-HGF)0
|a Wittenburg, Peter
|b 0
|e Corresponding author
245 _ _ |a Canonical Workflows to Make Data FAIR
260 _ _ |a Cambridge, MA
|b MIT Press
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1672836893_22540
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The FAIR principles have been accepted globally as guidelines for improving data-driven science and data management practices, yet the incentives for researchers to change their practices are presently weak. In addition, data-driven science has been slow to embrace workflow technology despite clear evidence of recurring practices. To overcome these challenges, the Canonical Workflow Frameworks for Research (CWFR) initiative suggests a large-scale introduction of self-documenting workflow scripts to automate recurring processes or fragments thereof. This standardised approach, with FAIR Digital Objects as anchors, will be a significant milestone in the transition to FAIR data without adding additional load onto the researchers who stand to benefit most from it. This paper describes the CWFR approach and the activities of the CWFR initiative over the course of the last year or so, highlights several projects that hold promise for the CWFR approaches, including Galaxy, Jupyter Notebook, and RO Crate, and concludes with an assessment of the state of the field and the challenges ahead.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(EU-Grant)787576
|a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|c 787576
|f ERC-2017-ADG
|x 1
536 _ _ |0 G:(BMBF)01IS18047A
|a Verbundprojekt DeepRain: Effiziente Lokale Niederschlagsvorhersage durch Maschinelles Lernen (01IS18047A)
|c 01IS18047A
|x 2
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 3
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Hardisty, Alex
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Franc, Yann Le
|b 2
700 1 _ |0 P:(DE-Juel1)166264
|a Mozaffari, Amirpasha
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Peer, Limor
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Skvortsov, Nikolay A.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Zhao, Zhiming
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Spinuso, Alessandro
|b 7
773 _ _ |0 PERI:(DE-600)2973844-1
|a 10.1162/dint_a_00132
|g p. 1 - 20
|n 2
|p 286–305
|t Data Intelligence
|v 4
|x 2096-7004
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/906811/files/dint_a_00132%20%281%29.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906811
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166264
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2022
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2020-07-21T15:11:27Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2020-07-21T15:11:27Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
|d 2020-07-21T15:11:27Z
915 _ _ |0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|a Creative Commons Attribution CC BY (No Version)
|b DOAJ
|d 2020-07-21T15:11:27Z
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0112
|2 StatID
|a WoS
|b Emerging Sources Citation Index
|d 2022-11-17
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-17
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a OPENSCIENCE
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21