MODIFIED COMMUNICATION NETWORKS FOR THE SIMULATION OF NEUROMORPHIC SYSTEMS

5 JULY 2021 I R. KLEIJNEN, P. EBRAHIMZADEH

R.KLEIJNEN@FZ-JUELICH.DE

INTRODUCTION

The Advanced Computing Architecture (ACA) Project

Development of a novel NC simulation platform for computational neuroscience

- Biological connectivity level 10.000 synapses per neuron on average
- Large scale aiming towards human/mammal brain size [$\approx 10^{11}$ neurons]
- Simulated biological time step 0.1 ms
- 100x faster than biological real time simulation
- Perform and explore online learning by simulating different learning rules

Here we focus on the communication task at hand

- Computation/simulation of neuron and synapse behavior not considered
- Development of a novel high bandwidth, low latency spike communication infrastructure
 - → Secondary interconnect layer

INTRODUCTION

The Problem at Hand - Bandwidth in the Human Brain

Neuron count: 10¹¹

Avg. firing rate: 10 Hz

Source AER coding:

$$\lceil \log_2(10^{11}) \rceil = 37 \frac{\text{bits}}{\text{spike}}$$

Aggregate data generated:

$$10^{11} \times 10 \text{ Hz} \times 37 \frac{\text{bits}}{\text{spike}} = 4.625 \frac{\text{TByte}}{\text{sec}}$$

Aggregated Global Internet Traffic

SIMULATION SETUP

Initial grid network

Start off with a N by N square mesh connected in a torus 50 Neurons per Node

Uniform connected NN with $\epsilon = 0.05$

Routing using the Dijkstra algorithm

 Number of nodes crossed ("hops") used as distance/latency metric

Total number of bi-directional links: $2N^2$

SIMULATION SETUP

Modified grid – Adding Random Connections

SIMULATION RESULTS

Random Connection Lengths (20x20 grid network)

Short range connections:

$$3 \leq dist_{Euclidean}(a, b) \leq 5$$

Mixed range connections:

$$3 \leq dist_{Euclidean}(a, b)$$

Long range connections:

$$12 \leq dist_{Euclidean}(a, b)$$

SIMULATION RESULTS

Evolution of the traffic distribution

Histograms of the traffic distribution for different number of additional connections.

CONCLUSION

Cross-over point

- Solely additional short or long range connections increase the maximum load on parts of the network for increasing N
- Adding connections from different lengths, reduces the networks maximum load, even at larger N (N=28)
- Different configurations of random connections, i.e. different iterations, show only minor differences in performance.
 - -> suggests that the structure is of less importance

Contact: r.kleijnen@fz-juelich.de

Simulation Runs

N	Number of simulation steps:	Number of Iterations	Number of Parameter setups:	Total number of simulation runs
12	145	25	3	10875
14	197	25	3	14775
16	257	25	6	38550
18	325	10	3	9750
20	401	10	6	24060
24	145	10	3	4350
28	50	10	3	1500

12x12 Mesh

14x14 Mesh

16x16 Mesh

18x18 Mesh

20x20 Mesh

24x24 Mesh

Distance Metric – Nr. Of "Hops" vs. Wirelength

Nr. of "hops

Bandwidth distribution on the modified 20x20 grid for an increasing number of additional connections.

Wirelength

Bandwidth distribution on the modified 20x20 grid for an increasing number of additional connections

