000906820 001__ 906820
000906820 005__ 20250129094340.0
000906820 0247_ $$2Handle$$a2128/30846
000906820 037__ $$aFZJ-2022-01714
000906820 1001_ $$0P:(DE-Juel1)185953$$aShahed, Hend$$b0$$ufzj
000906820 1112_ $$a30th annual meeting of the German Crystallographic Society (DGK)$$cLudwig Maximilians Universität München + online$$d2022-03-14 - 2022-03-17$$wGermany + online
000906820 245__ $$aElucidation of Barocaloric Effect in Spin Crossover Compounds
000906820 260__ $$c2022
000906820 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1648117087_1005
000906820 3367_ $$033$$2EndNote$$aConference Paper
000906820 3367_ $$2BibTeX$$aINPROCEEDINGS
000906820 3367_ $$2DRIVER$$aconferenceObject
000906820 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000906820 3367_ $$2ORCID$$aOTHER
000906820 520__ $$aThe search for new efficient materials and refrigeration mechanisms is a key challenge toreplace the conventional vapor compression technology. An attractive alternative technologyuses the caloric refrigeration cycle, which is based on the adiabatic temperature and isothermalentropy change upon tuning an external parameter such as pressure, electric field or magneticfield. Recently, spin crossover (SCO) compounds have been recognized as promising candidates,which exhibit large barocaloric effects: Large isothermal entropy changes have been reportedfor some of these SCO compounds at fairly low hydrostatic pressures (< 1.2 GPa) [1]. In SCOcomplexes the central metal ion switches between a low spin (LS) state at low temperature /high pressure and a high spin (HS) state at high temperature / low pressure. The LS to HStransition involves an increase of the spin entropy, but a larger part of the entropy changeoriginates from changes in the intramolecular vibrations [2].In this work, we report on magnetization measurements and single crystal synchrotronradiation diffraction on SCO complexes consisting of Fe+2 as a central ion bound to six nitrogenatoms. Our focus is Fe(PM-Bia)2(NCS)2, PM-Bia = (N-(2′-pyridylmethylene)-4-amino-biphenyl),which crystallizes in two polymorphs depending on thesynthesis route. Polymorph P1 crystallizes orthorhombic(Pccn) and undergoes an abrupt spin transition around 170 K.Polymorph P2 crystallizes monoclinic (P21/c) and undergoes agradual spin transition around 200 K [3].From the structural data, we extracted the temperaturedependence of the Fe-N distances (Figure 1), which can thenbe used to determine the high spin fraction. From the fitting ofthe temperature dependence of the high spin fraction, weobtained the change in entropy (ΔS), the change in enthalpy(ΔH), and the cooperativity (Г). The values obtained for ΔS andΔH on the basis of the structural data are substantiallydifferent from the values of the entropy as deduced from heatcapacity measurements [4]. The width of the transition region,differs strongly between the two polymorphs. This indicatesthe importance of intermolecular interactions for the spintransitions in both polymorphs.
000906820 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000906820 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000906820 7001_ $$0P:(DE-HGF)0$$aSharma, N.$$b1
000906820 7001_ $$0P:(DE-Juel1)130504$$aAngst, M.$$b2$$ufzj
000906820 7001_ $$0P:(DE-Juel1)131018$$aVoigt, J.$$b3$$ufzj
000906820 7001_ $$0P:(DE-Juel1)130884$$aPersson, J.$$b4$$ufzj
000906820 7001_ $$0P:(DE-HGF)0$$aTörnroos, K. W.$$b5
000906820 7001_ $$0P:(DE-HGF)0$$aChernyshov, D.$$b6
000906820 7001_ $$0P:(DE-HGF)0$$aEnglert, U.$$b7
000906820 7001_ $$0P:(DE-HGF)0$$aGildenast, H.$$b8
000906820 7001_ $$0P:(DE-HGF)0$$aGrzechnik, A.$$b9
000906820 7001_ $$0P:(DE-Juel1)145694$$aFriese, K.$$b10$$ufzj
000906820 8564_ $$uhttps://juser.fz-juelich.de/record/906820/files/abstract%20book_DGK_070.pdf$$yOpenAccess
000906820 909CO $$ooai:juser.fz-juelich.de:906820$$pdriver$$pVDB$$popen_access$$popenaire
000906820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185953$$aForschungszentrum Jülich$$b0$$kFZJ
000906820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130504$$aForschungszentrum Jülich$$b2$$kFZJ
000906820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131018$$aForschungszentrum Jülich$$b3$$kFZJ
000906820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130884$$aForschungszentrum Jülich$$b4$$kFZJ
000906820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145694$$aForschungszentrum Jülich$$b10$$kFZJ
000906820 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000906820 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000906820 9141_ $$y2022
000906820 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906820 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000906820 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000906820 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000906820 9801_ $$aFullTexts
000906820 980__ $$aabstract
000906820 980__ $$aVDB
000906820 980__ $$aUNRESTRICTED
000906820 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000906820 980__ $$aI:(DE-Juel1)PGI-4-20110106
000906820 980__ $$aI:(DE-82)080009_20140620
000906820 981__ $$aI:(DE-Juel1)JCNS-2-20110106